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NOMENCLATURE 

A, B ,C ,D  = state-space description of vehicle dynamics 

q

D
  = drag normalized by dynamic pressure (ft2) 

g  = acceleration due to gravity (ft/s2) 

LI   = inertia of slung load (slug-ft2) 

xzzzyyxx IIII ,,,   =  moments of inertia (slug-ft2) 

l   = sling length (ft) 

L, M, N  = moment components about body-fixed x, y, and z directions (lb-ft) 

m  = mass (slug) 

Am   = mass of aircraft (slug) 

Lm   =  mass of load (slug) 

M, F, G  =  state-space description of vehicle dynamics with mass-matrix 

cc qp ,   = lateral and longitudinal inertial cable rates (rad) 

 p, q, r  = vehicle roll rate, pitch rate, yaw rate (rad/s) 

BA R   = rotation matrix from coordinate system B to coordinate system A 

s  = Laplace variable  

t  = time (s)  

T  = cable tension (lb)  

u, v, w  =    velocity components in the body-fixed x, y, and z directions (ft/s) 

uo, vo, wo  = trim velocity components in body-fixed x, y, and z directions (ft/s) 

oV   = trim aircraft velocity (ft/s) 

uyx


 , ,   = state vector, output vector, control vector  

X, Y, Z  = force components in the body-fixed x, y, and z directions (lb) 

X,Y,H  = longitudinal position, lateral position, and height (ft)  

az   = vertical offset from aircraft center-of-gravity to the hook (where  

   sling connects to fuselage) (ft)  

a   =  actuator input (in) 

pedcollatlon  ,,,   = longitudinal cyclic, lateral cyclic, collective, pedal inputs (in) 

 



xi 

   =  characteristic equation 

co   =  trim longitudinal cable angle relative to fuselage (rad) 

MAG  = depth of magnitude distortion of aircraft with external load, as   

   compared to an unloaded aircraft on a Bode plot (dB)  

cc yx   ,   =  velocity of the load in the cable-axis x and y directions, relative to   

   the helicopter (ft/s)  

cc   ,   = lateral and longitudinal cable angles relative to the aircraft (rad) 

   = damping ratio 

o   = trim aircraft pitch attitude (rad) 

   = air-density (lb/ft3) 

   = time delay vector (s)  

  , ,   = Euler angles (rad) 

cc  ,   = lateral and longitudinal inertial cable angles (rad) 

LLL  ,,   =  load Euler angles with respect to the inertial frame (rad) 

   = frequency (rad/s)  

n   = natural frequency (rad/s) 

135   = frequency where the phase of response crosses -135 degrees on a   

   Bode plot (rad/s) 



xii 

ACRONYMS 

AC  = Attitude Command control system response type 

ALTHLD  =  ALTitude HoLD control system response type 

CAF  = Cable Angle/rate Feedback control system 

DRB  =  Disturbance Rejection Bandwidth  

EGI  = Embedded GPS/INS 

FCS   =  Flight Control System 

GM  = Gain Margin (dB) 

HQR  = Handling Qualities Rating 

LMR  =  Load Mass Ratio -  LAA mmm   

MTE  = Mission Task Element 

OBL  =   Optimized BaseLine control system 

PH  =  Position Hold control system response type 

PID  =  Proportional, Integral, Derivative type controller 

PM  = Phase Margin (dB) 

RASCAL  =  Rotorcraft Aircrew Systems Concepts Airborne Laboratory  

   (Fly-by-wire UH-60A Black Hawk) 

RCHH  = Rate Command Heading Hold  

SAS  =  Stability Augmentation System 

VH  = Velocity Hold control system response type 

XOVER  =  Cross-over frequency, where Bode magnitude is 0dB (rad/s) 



1 

1 Introduction 

1.1 Motivation 

The operation of helicopters carrying externally slung loads has an important role in military and 

civilian applications for many diverse tasks such as delivering supplies, search and rescue, construction, 

fire-fighting, and logging. The additional utility of operating with a slung load comes at the cost of higher 

piloted workload due to the nature of controlling a two-body dynamic system: helicopter and slung load. 

The pilot must maneuver the helicopter effectively in order to fly to the drop-off point, monitor load 

motions, and eventually place the load down in a precise location – often without visibility of the load 

from the cockpit. Precision load delivery requires extensive compensation from the pilot, because this 

task requires the pilot to adopt a strategy similar to a non-collocated [1] control system to indirectly 

control the load position though the rotor. It is well known that the presence of external loads causes 

degraded piloted handling quality characteristics, especially for configurations with long slings and heavy 

loads [2]. 

Slung load operations have a high rate of accidents. Manwaring et. al studied the 230 civil helicopter 

slung load accidents that occurred between 1980 and 1995, which accounted for 11% of all helicopter 

accidents [3].  One of the specific risk factors identified was the potential for overload in solo pilots. This 

is especially true in logging, where there is one pilot who flies all day long, and must divide attention 

between the engine temperatures, warning lights, fuel quantity, and various other gauges, as well as 

watching the load to keep it clear of obstacles and ground personnel, and keep the rotor blades clear of the 

trees [4]. Despite the recommendations of Manwaring in 1998 regarding the high workload of helicopter 

external load operations, this aspect of external load operations was not improved in the following 10 

years, as noted by deVoogt’s study of the 120 civilian helicopter external load accidents between 1995-

2005 [5]. A key finding of deVoogt’s study was that training and experience still cannot compensate for 

the demands on the solo pilot, and that the addition of crew (either flight or ground) could considerably 

reduce pilot workload. 

The potential for high pilot workload is also prevalent in military external load operations.  Key’s 

study of military helicopter operations showed that marginal or deficient handling qualities, which result 

in higher pilot workload, had a strong correlation with pilot error mishaps [6].  The author of Ref. 6 

comments that adverse circumstances such as blowing dust can result in very long hook-up times (10 to 

15 min), and that a hook-up crewman could have difficultly when he is “standing in the dark, in a tornado 

of downwash with a 46,000lb helicopter drifting around inches above his head”. In this study of military 

helicopter mishaps, approximately 10 out of 35 total pilot error mishaps on the CH-47D were slung load 

related (although often only damage was done to the load). Still, this represents a relatively high rate 

(28%) of mishaps related to slung load operations on the CH-47D.   
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Pilot experience also plays a heavy role in the potential for accidents and mishaps. Both Key’s 

military study and deVoot’s analysis of civilian data point out that accident rates increase as pilot 

experience falls. In addition, Horcher’s case study which used GPS to track helicopter yarding (logging) 

operations indicated that an experienced pilot was 63% more productive than an inexperienced pilot [7].  

A  method of relieving pilot workload and compensating for pilot inexperience is to introduce a 

feedback flight control system, which augments the pilot’s input to provide improved stability, handling 

qualities, and load damping. In fact, advanced control laws are a proven and recommended method of 

reducing pilot workload in military operations, as noted in the military’s recent rotorcraft survivability 

study [8]. Key points out that a good flight control system that improves handling qualities demands less 

skill from the inexperienced pilot and improves safety in degraded visual environments for all pilots [6].  

Advanced control laws typically include semi-autonomous modes such as velocity hold, altitude hold, and 

position hold, which are very applicable to external load operations. In addition, if the load motion were 

measured, it would be possible to control the external load automatically.  

This dissertation describes the design and flight test of an advanced full authority fly-by-wire flight 

control system (FCS) with novel architecture that implements external load cable angle and cable rate 

feedbacks combined with conventional fuselage feedback in order to improve piloted handling qualities 

with an external load. The focus is on hover/low speed operations, as pilot interviews by the author have 

identified the load pick-up/placement as the most difficult aspect of slung load operations, requiring high 

pilot workload. In addition, DeVoogt identifies hover as the critical flight phase, which accounted for 

41% of accidents [5]. Key also points out that military pilot-error mishaps from low speed maneuvering 

are significantly more prevalent [6]. The goal of this research is to improve hover/low speed pilot 

workload and increase load placement precision, both of which are critical to improving safety and 

efficiency of helicopter external load operations. These benefits are applicable and desirable in both 

military and civilian slung load operations.  

1.2 Background 

With the development of a prototype of the Heavy Lift Helicopter by Boeing in the 1970s came many 

ideas for automatically controlling helicopters with external loads. During this development period, 

before the program was canceled, two methods for providing active damping of the load emerged. The 

first method is a direct “on-load” control mechanism. The on-load actuator provides a direct control force 

(or moment) to the load or sling, which can damp the load motions independently of the fuselage motions. 

Many examples of this type of system were discussed in the literature of the 70s; including an active arm 

[9] installed on the hook, an active winch system [10] and an aerodynamically stabilizing fin on the load 

[11,12]. The second method is to indirectly control the load motion through load feedback to the rotor. To 

damp load motions, the helicopter must be used as an actuator to control the response of the load, and 

therefore the load cannot be damped independently of fuselage motions. The concept of using a feedback 
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system to the rotor to indirectly damp the load motions by utilizing cable angle feedback was pioneered in 

the 1970s by Dukes[13], Gupta[14,15], Liu[12] and Hutto[16]. Lui and Gupta focused on optimal control 

methods for full-state feedback including load motions. Dukes and Hutto used classical control methods 

to improve load damping. Reference 12 provides a comprehensive trade-off study comparing these direct 

and indirect load controlling methods. It was concluded that the indirect feedback systems were more 

complex in implementation due to electronic technological limitations at the time (1970s), but were more 

robust in their effectiveness to differing load configurations as compared to control devices installed 

directly on the external load.  

Modern electronic control technology enables much easier implementation of an indirect feedback 

control system of load motions to the helicopter rotor. The indirect feedback method can be easily 

incorporated into an existing fly-by-wire system.  It requires only a measurement of the load states, and 

flight control software changes, which demands relatively few hardware changes. In contrast, the direct 

method requires installation of additional actuators, which adds mechanical complexity and weight, and 

still requires the same sensors to measure the load motion. Therefore, the indirect method of cable 

angle/rate feedback to the rotor is the focus taken herein.  

The modern flight-test research in the area of indirect external load feedback control for helicopters 

focuses on unmanned aerial vehicles (UAVs). The unmanned K-MAX helicopter uses cable angle 

feedback to aircraft controls (i.e. indirect control) to stabilize the load motions [17]. Another example of 

indirect control is given in Ref. 18 which applied a feed forward technique previously used on overhead 

cranes to reduce swing motion on an unmanned autonomous Bergen Industrial Twin (5.3 ft rotor 

diameter). Another study on small unmanned rotorcraft implemented delayed load state feedback to the 

rotor  (indirect control) to damp load motions on the GT-Max (10.2 ft rotor diameter) and the indoor 

electric AAU Corona (2ft rotor diameter) [19]. Kang developed a system for autonomous precision 

airborne cargo delivery to moving platforms, and demonstrated it on the unmanned GT-Max helicopter 

[20]. The focus of these flight test studies has been on unmanned load damping and delivery, where 

handling qualities and pilot perception are not relevant.  

Current literature on manned indirect external load feedback has shown analytical benefits of 

incorporating cable angle/rate feedback into a modern full-authority flight control system. One such study 

has shown that conventional fuselage feedback control systems for helicopters with heavy external loads 

cannot provide adequate stability margins and simultaneously meet the military helicopter handling 

qualities specification (ADS-33E-PRF [21]) requirements, particularly in the roll axis [22].  Reference 22 

also analytically demonstrated for the CH-53K that adding an advanced feedback configuration including 

cable rate feedback can provide improved stability margins.  Recently, the German Aerospace Center 

(DLR) has also begun analytically exploring the use of rotor-state feedback for helicopter sling load 

positioning [23], and helicopter sling load damping [24]. This work was motivated by the DLR’s 
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experience with difficulty in load placement of an externally slung pioneer bridge on a CH-53G (with 

standard fuselage feedback). This task had a high workload due to poor load damping, and the inability of 

the pilot to see the load in the test aircraft (CH-53G), which resulted in long set-down times. Based on the 

analytical studies in Ref. 23 and Ref. 24, Brenner concludes that the cable angle feedback technology 

could improve piloted workload in load placement. The modern body of literature focuses on the 

analytical and lacks flight test studies to determine/address the effects of the load feedback on handling 

qualities and pilot perception. 

Recent studies by the German Aerospace Center (DLR) address the problem of pilot perception by 

focusing on a flight director for the Bo-105 and CH-53G helicopters, which does not use cable angle 

feedback control, but instead provides a display aid to the pilot for damping pendulous load motion 

[25,26]. This method was flight tested and has proven very effective at damping unruly modes in forward 

flight, and leaves the pilot in full control thus eliminating handling qualities concerns associated with 

automatic load damping. However, this method requires the pilot to be looking at a cockpit display as 

opposed to out the window, which would make it difficult for low speed, low altitude operations such as 

precision load placement that often occur near obstacles (such as in logging). The DLR did not test this 

technology for load placement tasks. However, in 1974, DiCarlo [27] studied a similar technology, 

closed-circuit television as a pilot aid, for load placement. The closed-circuit television aid for load 

placement was compared to the conventional method of using a crew chief to call out load position (still 

the current method used when the pilot cannot see the load) and the use of a load-facing pilot (for load 

placement only). This study showed that the closed-circuit television had the highest pilot workload 

because the pilot was required to split attention between the display and the outside world. The pilots 

reported that the crew-chief and load-facing pilot methods had much lower workload and that the load-

facing pilot had the highest precision overall. 

Although the pilot aid is good solution in terms of pilot perception of the handling qualities, it would 

increase pilot workload by dividing pilot attention at hover/low speed.  Automatic control of the load with 

cable angle feedback is a more appropriate solution for hover/low speed because the pilot can focus more 

fully on the situation outside of the cockpit. However, in order to do this successfully the issue of 

handling qualities must be addressed.  

Pilot perception of handling qualities, in large part, has discouraged the use of cable angle feedback in 

flight over the past 40 years. Despite the analytical benefits of cable angle feedback, there are no recent 

manned flight tests of the technology. In fact, the last manned flight tests of this technology are from the 

1970s work on the heavy lift helicopter demonstrator (a CH-47C) [16,28]. These flight tests demonstrated 

the ability to improve the damping of the load pendulum motions, but the load feedback generally had the 

effect of making the load feel heavier to the pilot [28]. This is not a desirable outcome because a heavier 

load is generally associated with poor maneuvering handling qualities [2].  
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In the years since the CH-47C cable angle flight tests fly-by-wire, handling qualities studies and 

handling qualities criteria for helicopters with slung loads have been developed [2,21]. Also modern tools 

are now available for multi-objective control design that optimize against many specifications 

simultaneously including load response, handling qualities and stability. In addition to applying these 

enabling technologies in a cohesive way, this dissertation takes a fundamentally different approach to 

previous literature in the development of an automatic control system for a manned application that 

addresses the pilot’s perception. As opposed to the past focus on only load damping, handling qualities 

for maneuvering and load placement are considered to be of critical importance. This dissertation makes 

use of modern technology, specifications, control design techniques and handling qualities considerations 

to enable the first successful flight tests of cable angle feedback technology since the 1970s. 

1.3 Contributions of Dissertation 

The problem of handling qualities for external load operations is well known in the industry. In the 

1970s external load feedback was demonstrated to improve load damping in flight, but was not able to 

win pilot acceptance and was very difficult to install at the time. Thus, the problem of how to effectively 

use cable angle/rate feedback to improve manned helicopter operations has plagued the industry for the 

last 40 years, resulting in no flight test demonstrations of the technology during this time.  This 

dissertation leverages advances in fly-by-wire, complex control design procedures (direct multi-objective 

optimization), and recently developed work that relates handling qualities to dynamic response 

(specifications) to successfully flight test cable angle feedback technology in a manned helicopter. The 

key contributions of this work are developing an understanding of the handling qualities trade-offs for 

cable angle/rate control system design, implementing an approach to solve the problem with a novel task-

tailored control system, and performing extensive piloted flight tests of the control system on a fly-by-

wire Black Hawk. These three key contributions are described in detail below. 

Key Contributions 

1. Identification of trade-off between handling qualities and load damping 

Coupling numerator analysis [29, 30, 31], which was used to provide an effective single input 

response for analysis of basic helicopter/load dynamics, indicates that a trade-off exists between load 

damping and handling qualities for a cable-angle feedback control system.  Coupling numerator analysis 

was used to show that the load damping can be improved through cable feedback to the rotor only at the 

cost of degraded (predicted) handling qualities characteristics, and vice-versa. This is the first time such a 

trade-off is recognized in the literature. The trade-off was explored with root-locus and bode control 

design techniques.  

2. Development of a task-tailored technique for cable angle/rate feedback 

A full-order attitude command control system was developed starting from the coupling numerator 

analysis and tested in a piloted fixed-base simulator to demonstrate that the pilot’s comments were 
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consistent with a trade-off between load damping and handling qualities. This analysis and piloted 

simulation led to the key contribution of this thesis, which is a task-tailored control system with fuselage 

and cable angle/rate feedback. The task-tailored control law is a novel technique which provides 

improvements to pilot handling qualities during maneuvering and provides load damping (which degrades 

pilot handling) in an automated hover-hold mode. The control feedbacks were designed using multi-

objective optimization. This architecture enables pilots to have the advantages of improved load damping 

while also meeting the handling qualities goals.  

3. Significant, flight validated improvement in handling qualities and load placement   

The 40 hours of manned flight tests that were completed on an experimental fly-by-wire JUH-60 

Black Hawk helicopter are an important contribution to the literature. The last manned flight test of such a 

system was performed in the 1970s. This research contributes the first full set (3 pilots) of handling 

qualities ratings for a cable angle/rate feedback control system using modern evaluation techniques such 

as ADS-33 mission task elements. In addition, a new precision load placement task was developed and 

tested by 5 pilots. This task is planned to be added to the military helicopter design standard, ADS-33E-

PRF [21], because this important and high workload aspect of slung load operations was not previously 

included as a mission task element in the specification.  

Overall, the task tailored control system contributes improved handling qualities ratings from Level 2 

to Level 1 (Cooper Harper [32]), as compared to the legacy partial authority SAS used on the operational 

UH-60A/L. It also improves precision load placement times by 50% for a 1000lb load, and 30% for a 

5000lb load. If implemented operationally, these handling qualities and precision load placement 

improvements would increase safety for pilots and ground personnel, and improve efficiency of external 

load operations.  

Supporting Contributions 

In addition to the key contributions that were made in this dissertation, there were some significant 

supporting contributions that enabled the successful development and flight testing of the cable angle/rate 

feedback control system. These supporting contributions are described below. 

1. Explicit linear model structure for helicopter/slung load dynamics   

This dissertation develops an analytical linear model structure for a helicopter with an externally 

slung load that can be appended to an existing unloaded helicopter model. This model structure is unique 

and also very useful for system identification because unknown terms such as helicopter stability and 

control derivatives are not lumped into known physical quantities associated with the slung load, such as 

sling length or load mass.  

2. Derivation of state-space constrained coupling numerator analysis 

Coupling numerator analysis has been used in the literature to calculate the effective single-

input/single-output transfer function of a system with key off-axis responses tightly constrained by the 
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other control inputs [31]. These constrained coupling numerator solutions presented in the literature are 

limited because they can only provide a single SISO transfer function. For higher-order systems, this 

dissertation derives a state-space representation with multiple inputs and outputs, with some but not all, of 

these inputs and outputs constrained. The new solution for the constrained coupling numerator is 

presented in state-space form. The resulting system is employed to look at basic coupling effects of cable 

angle/rate feedbacks in the lateral axis.  

3. Key methods for successful flight test integration of cable angle/rate feedback 

Implementation for flight test such as the modeling and filters for sling dynamics, and equations for 

converting load angles to cable angles were developed. These methods are unique due to the limited flight 

testing of a cable angle/rate feedback system that has been performed in recent times. These flight test 

considerations are critical for the success of the flight test, and will be important for future use of cable 

angle/rate feedback control systems on other platforms. 

1.4 Organization of Dissertation 

The main body of the dissertation in Chapter 2 provides a derivation and validation of the linear 

dynamics of a helicopter with a slung load. Chapter 2 also describes the vehicle used to demonstrate cable 

angle feedback technology – the UH-60 RASCAL fly-by-wire flying laboratory. Chapter 3 introduces the 

recently developed handling qualities specification for helicopters external loads that was developed in 

Ref. 2, and drives the design of the control system. Then, a coupling numerator approach is used to 

explore the trade-offs between load damping and handling qualities for cable angle/rate and fuselage 

feedback in Chapter 4. Chapter 5 takes the results of the coupling numerator analysis and applies the 

lessons learned to the full order UH-60 dynamics and uses multi-objective optimization to design an 

attitude control system, using an explicit model following controller architecture. Three attitude command 

designs are developed in Chapter 5; a Baseline fuselage feedback design, a Pilot Handling design with 

cable angle feedback, and a Load Damping design with cable angle/rate feedback. Then Chapter 6 

presents the results of a fixed base piloted simulation of the three attitude command designs. Chapter 7 

describes the development of a task tailored control law that switches between Load Damping and Pilot 

Handling control laws based on the results of the fixed base piloted simulation. The flight test 

implementation details are then described in Chapter 8, and flight test results are given in Chapter 9. 

Chapter 10 gives conclusions and recommendations for future work.  
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2 System Description and Modeling 

This chapter describes the test aircraft, a fly-by-wire JUH-60A Black Hawk, which will be considered 

herein as the example application for the cable angle/rate feedback technology. A description of the 

models that were used for control design, analysis, and simulation of this aircraft are provided. 

Additionally, the models are validated against UH-60 flight data.  

2.1 Aircraft Description 

The UH-60 helicopter, also known as the Black Hawk, is a utility helicopter that has been in 

operation since the late 1970s.  Since then, over 3000 Black Hawks and its derivatives have been 

produced [33]. The external load capability of the Black Hawk has been widely used to deliver supplies in 

military operations, as well as in natural disasters [33]. The fact that this helicopter is widely in operation 

and commonly used for external slung load operations makes it a good test vehicle for cable angle/rate 

feedback control technology. The UH-60A/L variants (in regular operation) have a partial authority 

stability augmentation system (SAS) with a rate command architecture, which has been shown to have 

poor handling qualities for heavy slung loads with long slings in flight [2].  Additionally, precision load 

placement can be difficult because the pilot cannot see the external load from the cockpit (military 

helicopters are not typically designed with cockpit windows that allow visibility of the load). When pilots 

have divided attention, poor visual cues, or are under time constraints to deliver an external load, these 

factors can combine to create a high workload environment for the pilots during external load operations.   

The US Army maintains a unique rotorcraft in-flight-simulator capability in the US, a full authority 

JUH-60A fly-by-wire flying laboratory – the Rotorcraft Aircrew System Concepts Airborne Laboratory 

(RASCAL) [34]. The RASCAL is operated by the Aeroflightdynamics Directorate of the US Army at 

Ames Research Center in Moffett Field, CA. This aircraft is shown with an external load in Figure 2-1. 

The RASCAL is a full authority, fly-by-wire system for the evaluation pilot, with a backup mechanical 

system for the safety pilot. It has been used over the last 10 years to research cockpit hardware, 

investigate rotorcraft handling qualities, and to develop and test new fly-by-wire control system 

architectures (some recent examples are [35], [36], and [37]). This aircraft is an excellent platform for 

safely testing new flight-by-wire control concepts, and therefore is suited for the development of an 

advanced control system with cable angle/rate feedback for external load operations. For these reasons, 

the RASCAL aircraft is considered herein. 
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Figure 2-1.UH-60 with external load. 
 
The fly-by-wire capability of the JUH-60A RASCAL is an important aspect of this research because 

it represents the future of rotorcraft flight control. While fixed-wing transports and fighter aircraft 

commonly use this technology, the rotorcraft industry is just beginning to implement fly-by-wire. Major 

upgrades or new rotorcraft such as the S-92F/CH-148, UH-60M Upgrade, NH-90 and now the CH-53K 

have opted to use full-authority fly-by-wire. The fly-by-wire flight control system uses measurements of 

piloted control inputs and other sensors (typically aircraft responses), and processes them through the 

flight control computer, which makes an appropriate command to the main and tail rotor actuators. Fly-

by-wire provides a more flexible, full-authority architecture than legacy mechanical partial authority 

(usually 10%) configurations used in previous manned literature on slung load control.  

The RASCAL ( Am =15,000 lbs) can carry a load of Lm =5000lbs for approximately 1.5 flight-hours 

at hover low-speed. This is the heaviest load RASCAL can carry to efficiently perform a set of 

evaluations without refueling. A useful measure of helicopter load is the load-mass-ratio (LMR):  

 
LA

L

mm

m
LMR


  (2.1) 

The LMR for the UH-60A with a 5000lb load is 0.25.  LMR > 0.20 are known to result in significant 

effects on handling qualities. The UH-60 with a heavy load (5,000 lbs, LMR = 0.25) and a long sling 

(56ft), was found to have poor baseline handling qualities (with standard partial authority SAS in UH-

60L) in Ref. 2, and therefore is good case for testing the benefits of cable angle feedback. Furthermore, 

the 56ft sling with a light load (1000lbs, LMR=0.06) has poor baseline handling qualities and long set-

down times in flight test for precision load placement. As these two configurations, described in Table 
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2-1, could particularly benefit from additional technology to improve handling qualities and load 

placement, they were used for evaluation.  However, the concept and conclusions developed here can be 

applied to any load configuration.  

 
Table 2-1. JUH-60A RASCAL flight test configurations.  

Configuration Load Mass Aircraft Mass LMR 

1 5000lbs 15,000lbs 0.25 

2 1000lbs 16,000lbs 0.06 

 
Another important parameter is the slung load pendulum frequency. Using a simple pendulum model, 

this natural frequency ( n ) is a function of sling length (l) alone:  

 
l

g
n   (2.2) 

A better approximation can be found in Tyson [38], which considers the inertia of the load. This is a 

function of sling length, load mass, and inertia of the load:  

 
LL

L
n Ilm

glm




2
  (2.3) 

Note that if the load is approximated as a point-mass, its inertia is zero ( 0LI ) and Eq. (2.3) is then 

equivalent to Eq. (2.2). 

2.2 Description of Dynamic Models 

The first step in designing a control system is to understand the underlying dynamic equations of 

motion. The model fidelity should be appropriate for the level of analysis and simulation that is being 

performed.  This research required a wide range of analysis and simulation techniques – from simple 

modeling to ascertain basic analytical effects of feedback via root locus plots, to full non-linear pilot-in-

the-loop simulation to support flight testing. Therefore, a wide range of models were used to support this 

research.  Table 2-2 is a roadmap of these models, and provides an overview of their assumptions, 

fidelity, and which analyses they supported. Then, the subsequent sections of this dissertation describe 

each model in more detail (except the flexible cable model, which is described in Chapter 8). 
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Table 2-2. Model overview. 

Model Section Description Assumptions/Fidelity Analyses Supported 

Generic nonlinear 
Equations-of-

Motion 
2.2.1 

Nonlinear 
model 

derived by 
author 

Aerodynamics treated as generic 
forces and moments. Model is used 
to support development of a linear 

model. Cable is assumed to be 
rigid. Load is a point mass. Model 

cannot be used for simulation. 

Supports development of 
analytical linear model 
structure in Sec. 2.2.2. 

Analytical Linear 
Model 

2.2.2 
Linear model 

derived by 
author 

Linear model is derived from 
generic nonlinear equations-of-
motion. Assumes quasi-steady 

rotor dynamics. Cable is rigid, load 
is point mass. 

Used to develop 
understanding of 

dynamics. Used for study 
of basic design trade-offs 

in Chapter 4. 

GENHEL 
with external load 

[39,38] 
2.2.3 

Nonlinear 
real-time 

simulation 
model 

Nonlinear, large angle simulation 
model. Uses blade element model 
for rotor aerodynamics. Cable is 

rigid. Slung load has inertia. 

Used in piloted fixed based 
simulator and hardware in 

the loop simulation in 
Chapters 6, 8. 

FORECAST/OVE
RCAST linear 

model for the UH-
60 with Slung 
Load [2,40] 

2.2.4 

Linear 
perturbation 

model of 
GENHEL 

with external 
load 

Linear equations-of-motion. Linear 
rotor flapping, lagging, coning 

dynamics states are used. Load is a 
point mass on a rigid cable. 

Used as basis for linear 
analysis and control design 
optimization in Chapters 5, 

7. 

Flexible Cable 
Model 

8.3 

Flexible 
model of 
cable and 
slung load 

Linear equations of motion. Load 
is a point mass on a flexible cable. 

Used to predict frequencies 
of motion in load 

measurements related to 
sling flexibility in Chapter 

8. 

 
2.2.1 Derivation of Generic Nonlinear Equations of Motion 

The derivation of helicopter/slung load equations of motion has been performed in many references, a 

sampling include Tyson [38], Cicolani [41], Gupta [14], and Wolkovitch [42].  Thus, the derivation herein 

is very similar to previous references, and therefore is included in Appendix A. The derived nonlinear 

EOMs in Appendix A support the development of a linear model structure. The key contribution in 

modeling is the structure of the analytical linear model, which is described in the following section.   

2.2.2 Derivation of an Analytical Linear Model 

The linearized model was developed from analytical perturbation and small angle approximation to 

the nonlinear equations described in Sec. 2.2.1, and Appendix A. This model is unique because it is 

derived in an analytical form that appends the load dynamics to an existing unloaded model structure 

based on the geometry and mass of the slung load. This linear model enables a very simple conversion 

from an unloaded to loaded aircraft model. The linear model structure is also an ideal setup for system 

identification, because none of the parameters that would typically be identified are lumped in with 

known geometric quantities. This model was used primarily to understand the dynamics of the 

helicopter/slung-load system and the complexity of the coupling terms between the two bodies. The 
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model was also used for studying the basic effects of cable angle/rate feedback on the helicopter/load 

coupling dynamics, in Chapter 4.  

 The basic two-body system, reference frames, and geometry of the model are defined in Figure 2-2. 

The sling is assumed to be rigid. The flexible sling modes are sufficiently frequency separated from the 

pendular mode that this is a reasonable assumption to make. Later, in Sec. 8.3 the flexible sling modes are 

modeled and identified, validating this assumption. 

x-axis is pointed into the page
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Figure 2-2. Reference frames and geometry for aircraft/slung load dynamics. 

 
The model has the following structure, states and controls:  

 )(   tuxx GFM  (2.4) 

  oyoxcccc TTTyxrqpwvux  
    (2.5) 

   colpedlonlatu   (2.6) 

The first nine states are the fuselage rigid-body states, where u, v, w represent fuselage velocities, p, 

q, r represent fuselage angular velocities, and   , , are fuselage Euler angles. The next four states are 

slung-load states, where the delta symbol indicates they are relative to the fuselage, so c , c  are 

lateral and longitudinal cable angles with respect to the fuselage and  cx , cy  are lateral and 

longitudinal velocities of the center-of-gravity of the external load relative to the fuselage. The final three 
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states T , oxT ,  oyT  are dummy algebraic states (linear combinations of the other states) related to the 

cable tension, and are used to simplify and organize the equations. The controls are the standard 

helicopter controls (lateral cyclic, longitudinal cyclic, pedal, and collective). These states and control 

inputs represent perturbations around trim and this model structure uses a quasi-steady rotor (no explicit 

rotor states). The key effect of the unmodeled rotor-dynamics can be characterized by time delay   at 

frequencies below ~12 rad/s on the UH-60, as shown later in Sec. 2.3. A time invariant value of   should 

be identified for each control input by comparing the quasi-steady model to a full-order model with 

explicit rotor states, or flight data.  

The aerodynamic forces and moments are approximated with 1st order Taylor series terms (stability 

and control derivatives) as in:  

 ........  lonqwu
A

aero

lon
XqXwXuX

m

X
  (2.7) 

where 
lon

XX u ,...., are the conventional aircraft stability and control derivatives for the force in the x-

direction of the body-fixed reference frame.  

The longitudinal equations for the helicopter fuselage states with an external load are: 
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 q  (2.11) 

 
LA mm

11
   (2.12) 

The model shown in Eqs. (2.8) – (2.12) treats the lateral and longitudinal dynamics as decoupled, and 

the rotor as quasi-steady (no explicit rotor-states). To develop a loaded model with coupled 

lateral/longitudinal dynamics and/or explicit rotor states, the T  and oxT  cable tension terms (and 

associated coefficients) can simply be appended to the unloaded model with the desired complexity.  

These two additional states are actually algebraic ‘dummy states’ that are used to separate these 
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complicated cable tension terms from the unloaded dynamics, and thus make the model easier to 

implement. Dummy states can be easily implemented using the M-matrix in Eq. (2.4). 

Dummy state oxT  represents the change in magnitude of the longitudinal component (fuselage axis) 

of the cable tension due to the load swing, where:  

   cocoo
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 )sin()sin(5.0
)cos()sin( 2  (2.13) 

 gmmF oLAxo )sin()(   (2.14) 

 gmmF oLAzo )cos()(   (2.15) 

The trim cable tension due to gravity in the x-direction and z-direction are given by Eq. (2.14) and 

(2.15), respectively. Changes in cable tension due to changes in the aircraft states are represented by 

dummy state T :  

 colcollonlonqwu TTqTwTuTT      (2.16) 
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Note that if an unloaded model with explicit rotor states is used as the baseline model upon which the 

loaded dynamics are appended, Eqs. (2.16)-(2.21) should be calculated using the effective quasi-steady 

derivatives (as determined by performing a model reduction). Herein, a decoupled quasi-steady (rotor) 

model is used as the baseline unloaded model for simplicity.  

The linear dynamics for the longitudinal load states (longitudinal velocity and cable angle) are 

described by: 
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The lateral helicopter fuselage dynamics are similar, but simpler in form than the longitudinal 

equations. The key effect of the slung load are the changes in magnitude of the lateral component 

(fuselage axis) of the cable tension due to the load swing, oyT . The lateral aircraft states do not affect the 

cable tension (no T  term as in the longitudinal equations) because these terms are small and drop out of 

the linear equations of motion. Thus, only term oyT is appended to unloaded dynamics to model the effect 

of the slung load on the lateral fuselage states:   
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Where   is defined by Eq. (2.12).  

Similarly to the longitudinal case, the model shown in Eqs. (2.24) – (2.28) treat the lateral and 

longitudinal dynamics as decoupled, and the rotor as quasi-steady (no explicit rotor-states). To develop a 

loaded model with coupled lateral/longitudinal dynamics and/or explicit rotor states, the oyT  state (and 

associated coefficients) can simply be appended to the unloaded model with the desired complexity. A 

simplified unloaded model was used herein for brevity.  

Then the change in magnitude of the lateral (fuselage axis) cable tension force due to lateral load 

swing, oyT , is given by:  
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Where the trim cable tension due to gravity in the x-direction, xoF , and z-direction, zoF , are given by Eqs. 

(2.14) and (2.15), respectively.    

 The linear equations for the lateral load velocity and cable angle states are: 
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Eigenvalues of Derived Linear Model for UH-60  

The analytical linear model is applied to the UH-60 dynamics for 15000Am lb , 5000Lm lb 

load and l=56ft sling. The stability and control derivates were taken from a validated internally loaded 

physics-based UH-60 model (generated by FORECAST [43]). The internally loaded model has a total 

mass of 20,000lbs. The analytical slung load states were then appended to the model using the equations 

from Sec. 2.2.2. The resulting eigenvalues of the loaded UH-60 model are shown in Table 2-3. 

Eigenvalues for analytical linear model of coupled helicopter/slung load system. As expected, there are 

unstable lateral and longitudinal Phugoid modes, which couple with the lateral and longitudinal short 

period modes to create the so called “hovering cubic”. The hovering cubic is characteristic of helicopter 

dynamics at hover. There are also the expected yaw and heave modes. The presence of the load adds 

oscillatory pendulum modes in the pitch and roll axes, as expected.  

 
Table 2-3. Eigenvalues for analytical linear model of coupled helicopter/slung load system.  

Mode Description Eigenvalue Damping Frequency (rad/s) 

Psi integrator 0 1.00 0.00 

Yaw/Heave -2.36e-001 +/- 8.26e-002i 0.94 0.25 

Longitudinal Phugoid 2.19e-001 +/- 4.23e-001i -0.46 0.48 

Lateral Phugoid 2.28e-002 +/- 5.01e-001i -0.045 0.50 

Pitch Mode -0.943 1.00 0.94 

Longitudinal Pendulum -5.10e-002 +/- 1.11e+000i 0.047 1.11 

Lateral Pendulum -8.22e-001 +/- 1.25e+000i 0.55 1.50 

Roll Mode -2.68 1.00 2.68 

 
2.2.3 Nonlinear Flight-Validated GenHel Model with External Load 

The development of the non-linear model in Appendix A treats the aerodynamics of the rotor as 

generic forces and moments. These modeling efforts are developed to provide understanding and insight 

into the dynamics problem and support analytical linearization. This dissertation does not attempt to re-
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derive the complex rotor dynamics and aerodynamics of the UH-60 considering the vast prior work on the 

subject (some examples include [39] and [44]). As this work focuses on control system analysis and 

design, it made sense to use tools that have been validated and developed over the last 20 years for the 

UH-60. Therefore, the General Helicopter Flight Dynamics Simulation (GenHel) was used for nonlinear 

simulation of the unloaded UH-60A aircraft [39]. This model is used in a piloted fixed base simulator 

(Chapter 6), and hardware in the loop simulation in Chapter 8. 

GenHel is a full flight envelope, nonlinear, large angle model, with rigid blades and fuselage [39]. It 

is a physics-based model that represents the rotor blades as hinged beams without flexibility, and models 

the rotor aerodynamics using conventional blade element theory. The inflow is represented by a Pitt-

Peters inflow model. The model also makes use of extensive wind tunnel and flight based corrections. 

The slung load dynamics are added via a module that simulates the load motion as a function of the 

helicopter states, and transmits hook forces and moments imparted by the external load up to the 

helicopter [38].  This process is depicted by Figure 2-3. The model of helicopter and slung load is 

extensively validated against flight data in Ref. 38.  
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Figure 2-3. Slung load simulation diagram (Ref. 38). 

 
2.2.4 FORECAST/OVERCAST Linear Model with External Load 

The analytical linear model presented in Sec. 2.2.2 is useful for system identification, developing 

simple linear models of the helicopter/slung load dynamics, and studying basic feedback control trade-

offs (in Chapter 4). However, it does not include explicit rotor-dynamics in the form presented herein. To 

support the flight control design optimization (in Chapters 5-7), a more complex model with rotor-

dynamics was extracted via perturbation methods from the non-linear GENHEL simulation described in 

Sec. 2.2.3. The tools used to extract these linear models are called FORECAST/OVERCAST [2,40]. The 

linear model extracted for the hovering externally loaded UH-60 has 30 states: 9 fuselage, 4 slung load, 6 

main rotor flap, 6 main rotor lag, 3 main rotor inflow, and 2 engine states. The resulting dynamic modes 
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of the model are shown in Table 2-4. The fuselage and pendular dynamics of the system have similar 

modes to those from the analytical linear model presented in Table 2-3. This is due to use of the same 

unloaded aircraft stability and control derivatives, and similar assumptions for the added slung load 

dynamics.  This model adds complexity in the addition of rotor flapping, lead-lag and inflow modes. It is 

important to include these modes when developing a control system design that has high cross-over 

frequencies that could potentially destabilize the rotor modes.  

The presence of the rotor modes however, does not significantly affect the load mode or other 

dynamics below 12 rad/s, except for the presence of an effective time delay. So simple design trade-offs 

can be developed using a simple model such as the analytical linear model or reduced order 

FORECAST/OVERCAST model that eliminate rotor modes, but one must be careful to account for the 

effective time delay (typically 70ms) of the rotor. This will become apparent in the Bode plot overlays in 

the following section of this dissertation.  

 
Table 2-4. Dynamic modes for 15,000lb UH-60 carrying a 5000lb external load on 56ft sling. 

Mode Description Eigenvalues Damping Frequency (rad/s) 

Psi Integrator 0 1.00 0.00 

Yaw/Heave -2.45e-001 +/- 5.80e-002i 0.97 0.25 

Pitch Phugoid 2.24e-001 +/- 4.11e-001i -0.48 0.47 

Roll Phugoid 4.20e-002 +/- 5.03e-001i -0.08 0.51 

Pitch Short Period -1.01 1.00 1.01 

Longitudinal Pendulum -6.20e-002 +/- 1.12e+000i 0.06 1.12 

Lateral Pendulum -7.70e-001 +/- 1.18e+000i 0.55 1.41 

Collective Lag -2.58e+000 + 1.01e+000i 0.93 2.77 

Roll Short Period -2.89 1.00 2.89 

Engine Response -4.64 1.00 4.64 

Regressive Flap -4.11e+000 +/- 4.53e+000i 0.67 6.11 

Constant Inflow -12.3 1.00 12.30 

Regressive Lag -5.78e+000 +/- 2.02e+001i 0.28 21.00 

1st Harmonic Inflow -2.04e+001 +/- 9.15e+000i 0.91 22.40 

Collective Flap -9.45e+000 + 2.56e+001i 0.35 27.30 

Progressive Lag -8.47e+000 +/- 3.61e+001i 0.23 37.10 

Progressive Flap -4.56e+000 +/- 4.87e+001i 0.09 48.90 

Power Turbine Response -90.8 1.00 90.80 

 
2.3 Validation of Linear Models against Flight Data 

The two linear models described herein (analytical linear model of Sec. 2.2.2 and FORECAST/ 

OVERCAST linear model of Sec. 2.2.4) are compared against flight data to assess their validity. A 70ms 

time delay was added to the analytical linear model to account for effective rotor dynamics. The flight 

data were recorded during frequency sweep maneuvers with the 5K load and 56ft sling. The frequency 
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responses were calculated from the time domain flight data using a ChirpZ-transform (similar to FFT) and 

composite windowing technique using CIFER® software [45].  This method was used to identify on-axis 

frequency responses of the aircraft. The frequency sweeps were recorded with the RASCAL fly-by-wire 

flight control system on, which makes it impossible to identify off-axis responses due to correlation in the 

controls from the mixer. Therefore, only on-axis responses were validated. There were no flight data for 

the pedal and collective axes for this flight condition, so the two linear models are simply overlaid. Herein 

the validation of the linear derived model against the OVERCAST/FORECAST model is considered to be 

sufficient. These responses also tend to have very light coupling with the external load.  

The longitudinal response validations are given in Figure 2-4 - Figure 2-6. The linear models agree 

well with each other and with the flight data for the on-axis longitudinal responses. The flight data is valid 

over the frequencies where the coherence is greater than 0.5 [45].   The fuselage longitudinal velocity and 

pitch attitudes are well modeled by both linear models and the effect of the load around 1 rad/s is also 

well modeled. In addition, the cable angles (relative to the fuselage) are in good agreement with the flight 

data.  It is important to point out that the analytical linear model and FORECAST/OVERCAST models 

have good correlation with each other over the frequency range of 0.1-12 rad/s because the effect of the 

rotor dynamics included in the FORECAST/OVERCAST model is not important over this frequency 

range. The effect of the rotor dynamics are modeled by a simple 70ms time delay in the analytical linear 

model responses, which works well up to 12 rad/s.  This indicates that the rotor/body dynamics are lightly 

coupled in this frequency range, and therefore well characterized by a time delay. Additionally, this 

indicates that the analytical linear model is sufficient for simple control design trade-off studies that focus 

on handling qualities and load response, which are mostly effected by dynamics below 12 rad/s.  

The lateral models have good agreement with flight data as shown in Figure 2-7 - Figure 2-9. The 

fuselage responses are well modeled over the 0.1-12 rad/s frequency range. The effect of the load on the 

aircraft, at the pendular frequency of ~1 rad/s is also accurately modeled. This is an important effect for 

handling qualities prediction. The load response is also well modeled, although the flight frequency-

response quality is low, especially at low frequency, as indicated by the coherence (coherence of less than 

0.5 is considered poor quality). Similarly to the longitudinal axis, the two linear models agree well over 

the frequency range shown, due to the validity of the quasi-steady rotor dynamics below 12 rad/s.  

The collective and pedal responses shown in Figure 2-10 and Figure 2-11 are comparisons between 

the two linear models. This is a check that the analytical linear model matches the 

FORECAST/OVERCAST data (since no flight data were available). As shown in the figures, there is 

little coupling of the heave and yaw degrees of freedom with the external load, indicated by the relatively 

small distortion near the pendulum frequency at ~1 rad/s. The yaw rate to pedal response of the analytical 

model under predicts the damping of the helicopter/load coupling as compared to the 
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FORECAST/OVERCAST model, providing a conservative estimate of the damping of the modes at ~0.5 

and ~1.0 rad/s. 
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Figure 2-4. Flight validation for lonu  . 
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Figure 2-5. Flight validation for lon . 
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Figure 2-6. Flight validation for lonc  . 
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Figure 2-7. Flight validation for latv  . 
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Figure 2-8.  Flight validation for lat . 

 

–40

–20

0

M
ag

 (
d

B
)

–400

–60

–200

0

P
h

as
e 

(d
eg

)

0.1 1 10
0

0.5

1

C
o

h
er

en
ce

Frequency (rad/s)

Flight data
Analytical linear model
Forecast/Overcast linear model

 
Figure 2-9. Flight validation for latc  . 
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Figure 2-10. Model comparison for colw  . 
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Figure 2-11. Model comparison for pedr  . 
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2.4 Summary of Chapter 2 

Chapter 2 describes the dynamic models that were used to support the control system design and 

analyses in this research. This chapter describes validation of these models, indicating that the models are 

of appropriate accuracy for development of a flight control system with fuselage and cable angle/rate 

feedback for a UH-60 helicopter with an external load. The key contributions of this chapter include: 

1. Development of an analytical linear model structure for two-body helicopter slung-load system.  

2. Validation of analytical linear model structure against flight data and the FORECAST/ 

OVERCAST model.  
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3 Slung Load Handling Qualities Specification 

The recent development of a new slung load handling qualities criteria in Ref. 2 provides insight into 

how slung loads degrade handling qualities, and which aspects of the response the pilots find undesirable. 

This understanding shapes how the inclusion of the load feedbacks can be used to improve the pilot 

handling qualities with an externally slung load in this research. Thus, the control design and analysis in 

later chapters (Chapters 4, 5, and 7) relies heavily on these criteria.  The slung load handling qualities 

specification is based on extensive flight test data where a variety of sling length and load masses were 

tested with the Mission Task Elements in ADS-33E-PRF [21]. Mission Task Elements are a set of 

stylized maneuvers for helicopters which are performed by the pilot and rated based on the Cooper-

Harper scale.  

The slung load handling qualities specification that was developed relates distortion in the shape of 

the attitude frequency responses of the externally loaded aircraft as compared to an internally loaded 

aircraft to the piloted handling qualities rating (HQR). An important characteristic of the response of an 

externally loaded helicopter is the depth of the notch in the attitude response (at 0.8 rad/s in Figure 3-1) 

that is associated with the attenuation of the attitude response to pilot stick inputs because of the load 

swing. This notch is non-existent for an internally loaded baseline helicopter (LMR = 0), and becomes 

deeper with increasing external load mass ratio (LMR, Eq. (2.1)) as shown in Figure 3-1. 

Handling qualities were correlated to the distortion in the frequency response of the externally loaded 

aircraft by collecting handling qualities ratings (HQRs) in flight in a UH-60L Black Hawk [2]. A variety 

of LMR and sling length configurations were used in order to test a range of response distortions in Ref. 

2. The depth of the notch (MAG) as compared to an internally loaded helicopter is the metric used in y-

axis of the handling qualities prediction criterion shown in Figure 3-2. As indicated by the HQRs 

supporting this criteria (as plotted in Figure 3-2) a greater magnitude loss (i.e. increased distortion caused 

by a heavier load) is associated with degrading handling qualities ratings given by pilots in flight (HQR > 

4), shown by the triangle symbols that converge in the upper left corner.  

The x-axis criterion shown in Figure 3-2 is the frequency of the -135 degree crossing of the phase 

( 135 ) response near the load mode (or the frequency of the minimum phase near the load mode if it 

does not cross -135 deg).  The frequency where the phase crosses -135 degrees decreases with longer 

sling lengths, due to the lower frequency load pendulum mode (at approximately  lg ). This is 

associated with degraded handling qualities in Figure 3-2 as shown by the triangle symbols, which 

indicate poor handling qualities. The -135 degree frequency is important because it is used in standard 

helicopter bandwidth criteria since it better correlates to helicopter handling qualities ratings than the pure 

magnitude bandwidth (-3dB frequency) that is often used in text books [46]. This -135 deg point also 

represents the frequency where the pilot will have 45deg of phase margin with pure gain compensation. 
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Flight test HQRs from Ref. 2 (shown in Figure 3-2) show that the unaugmented configuration 

considered herein, UH-60 with LMR = 0.25 and a 56ft sling, has poor baseline handling qualities (HQR > 

4) particularly in the lateral axis. 
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Figure 3-1. Roll attitude frequency response due to lateral cyclic lat  for the 79ft sling with increasing 

LMR (Ref. 2). 

 

0

5

10

15

20

LMR: 0.06

LMR: 0.12

LMR: 0.17

LMR: 0.21

LMR: 0.25

LMR: 0.28

LMR: 0.33

sling (ft):79 51 31 14

0 0.5 1 1.5 2
0

5

10

15

20

25

LMR: 0.06

LMR: 0.12

LMR: 0.17
LMR: 0.21

LMR: 0.25
LMR: 0.28
LMR: 0.33

sling (ft):79 51 31 14

H
Q

R
 ≤

 4

H
Q

R
 >

 4

H
Q

R
 ≤

 4

H
Q

R
 >

 4

ω–135 (rad/s)
0 0.5 1 1.5 2

ω–135 (rad/s)

φ/δlat

(a) Lateral Criteria (b) Longitudinal Criteria

θ/δlon

ΔM
A

G
 (

d
B

)

ΔM
A

G
 (

d
B

)

No rating
HQR ≤ 4
4 < HQR ≤ 6.5 

No rating
HQR ≤ 4
HQR > 4 

 
Figure 3-2. Slung load handling qualities criteria (Ref. 2), where HQR>4 represents poor handling.  

 



27 

Based on these criteria, the shape of the attitude response due to piloted stick determines how the 

slung load affects the piloted handling qualities. These data indicate that by reshaping the magnitude 

response via feedback control, the handling qualities of the externally loaded helicopter could be 

improved by manipulating the depth of the magnitude notch and the frequency of the -135 crossing. This 

approach would effectively cause the pilot to feel like he/she is flying a lighter load on a shorter sling. 

Reducing the depth of the magnitude notch for the UH-60 with LMR=0.25 and therefore improving the 

predicted HQR is one of the key goals of the control system developed herein. 

3.1 Summary of Chapter 3 

Chapter 3 describes recently proposed handling qualities criteria for helicopters with external loads. 

These criteria show that degraded handling qualities are correlated with larger distortion of the magnitude 

response of the aircraft attitude at the load pendulum frequency. This distortion increases with the mass of 

the slung load. This handling qualities criterion is important because it indicates that using a feedback 

control system to change the distortion of the magnitude response near the load pendular mode can affect 

the handling qualities associated with an external load configuration. Chapter 4 performs analyses to look 

at the effect of fuselage, cable angle, and cable rate feedback on the predicted handling qualities.   
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4 Coupling Numerator Analysis of Control Feedbacks 

The key components of the control system were initially developed in a single axis environment in 

order to explore the basic effects of cable angle feedback on the helicopter/load dynamics. However, due 

to heavily coupled helicopter dynamics, coupling effects due to off-axis loop closures could not be simply 

ignored. In this approach, coupling numerators [29,30] are used to calculate the effective aircraft 

dynamics between a particular input and output pair (for example latp  ), while the off-axis response 

variables are assumed to be tightly constrained by feedback (e.g. qlon  , rped  , wcol  ). 

Then when designing control systems for the full order, fully coupled, multi-input multi-output system, 

where all the loops are simultaneously constrained by the control feedbacks, the analysis from the single-

input coupling numerator is applicable. The first section of this chapter describes the traditional coupling 

numerator analysis developed by McRuer [29,30] to analytically calculate transfer functions of generic 

multi-loop systems. McRuer’s analysis was later extended by Ref. 31 to the tightly constrained solution 

that provides the effective SISO transfer-function from a coupled multi-loop system. In the second section 

of this chapter, a new state-space derivation is presented for the constrained response, which is equivalent 

to the coupling numerator approach, but extends the solution to a more generic multi-input, multi-output 

state-space formulation, with the desired responses constrained. Then, this analysis is used to look at the 

first-principles effects of simple fuselage and cable-angle feedback with root-locus and Bode analyses. 

4.1 Traditional Single-Input Single-Output Coupling Numerator Solution 

Coupling numerators were developed in the 1960s to calculate transfer functions for multi-loop 

vehicular control systems [29]. This analytical method of calculating transfer functions for MIMO closed-

loop systems is a useful tool for understanding the nature of the multi-loop problem in a coupled system. 

One key purpose of coupling numerator analysis is to allow insight into the effect of subsequent off-axis 

loop closures on the poles and zeros of the primary response. This was particularly important in the 1960s 

when the most common method of multi-loop control system design was trial and error using repetitive 

analysis on an analog computer, which did not provide much insight into the physical make-up of the 

modes [30]. In modern times, insight on multi-loop system dynamics can be achieved using software 

tools such as MATLAB’s SIMULINK and various symbolic mathematical packages. However, the 

coupling numerator analysis is still relevant and interesting because it leads to a constrained solution 

which can provide an effective SISO transfer function while all other loops are assumed to be tightly 

controlled in a MIMO system. This is an important solution, which can simplify the response and 

provides the fundamental effects of feedback in a single axis, while accounting for the coupling effects on 

the response that will be present when all loops of the control system are simultaneously closed. Then, the 

MIMO design can be conducted using the effective SISO loop closures of the constrained transfer 
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functions. Using this method to design effective compensation in all the control axes will ensure a self-

healing approximation once all loops are in place [47].  

4.1.1 Example Case 

As an example of multi-loop analysis using coupling numerators, consider the following notional 3 

degree-of-freedom system:  

 uxx
 BA   (4.1) 
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 Txxxx 321

 (4.3) 

 
 Tu 321 

 (4.4) 

Note that the A and B notation is used here to differentiate from the M, F, G formulation used later in Eq. 

(4.28), where A=M-1F and B = M-1G. Eqs. (4.1) – (4.4) can be represented equivalently in the Laplace (s) 

domain:   
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Numerator Notation 

A simple example of the notation used by McRuer [29] to represent an open loop transfer function 

numerator is demonstrated by the calculation of 33 x  with Cramer’s rule:  
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3

3

xN  represents the numerator of 33 x , which is calculated by replacing the 3x column in the A-matrix 

with the 3  column of the B-matrix and taking the determinant of the resulting matrix, as shown in Eq. 

(4.6).   

Coupling numerator analysis introduces a type of numerator notation where more than one column in 

the A-matrix is replaced by columns in the B-matrix before calculating the determinant. This type of 
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numerator is called a “coupling-numerator” to distinguish it from the conventional numerator. For 

example:   
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This notation can be used to represent any number of B-matrix column substitutions into the A-

matrix, for any order system.  

An additional property of the coupling numerator is that if two responses are feedback to the same 

control, or alternately if two controls are feedback to the same state, the coupling numerator is equal to 

zero:  

 021

11
xxN   (4.8) 

 011

21
xxN   (4.9) 

Also, the order of the coupling numerator is immaterial:  
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xxxx NN    (4.10) 

Multi-loop Analysis 

Now, imagine that system described in Eqs. (4.1) – (4.4) has two feedback loops as shown in Figure 

4-1, with compensation G11 and G22.  Notice there are no cross-feeds in the analysis (e.g. no compensator 

12G that would feedback 2x  to 1 ). The full generic analysis of Ref. 29 uses a fully propagated matrix of 

compensators between each input and output. However, for the sake of introducing coupling numerator 

analysis to the reader, the example shown herein is simplified to include only the diagonal terms in this 

matrix of compensators. 
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Figure 4-1. Block diagram for coupling numerator example. 
 

The system in Figure 4-1 can then be represented by the following state-space equations where 

1111 xG , 2222 xG : 
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Then, rearranging Eq. (4.11) and using LaPlace form:   
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In order to calculate the transfer function 33 x , with compensators G11 and G22 active, Cramer’s 

rule can again be used:   
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The notation 
22

1133 





x
xx  indicates that calculation of 33 x , taking into account active feedbacks of  

1x  to 1 , and 2x to 2 .  

The key to McRuer’s coupling numerator method is recognizing that the determinants, such as in Eq. 

(4.13), used to calculate the multi-loop transfer functions can be represented as a sum of simpler 

determinants. For example, the denominator in Eq. (4.13) can be represented as a sum of four simpler 

determinants:  
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The characteristic equation ( ), conventional numerators ( 1

1

xN , 2

2

xN ), and coupling numerator 

( 21

21

xxN  ) in Eq. (4.14) are calculated based on Eq. (4.5). The numerator of Eq. (4.13) can also be expressed 

as a sum of four simpler determinants:  
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The open-loop numerator and coupling numerators in Eq. (4.15) are calculated based on Eq. (4.5).  

Finally, the transfer function, calculated via coupling numerators is:  
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This method is easier, faster, and more insightful to calculate the responses than directly from Eq. 

(4.13) because the effects of the additional loop closures are represented by simple summed terms. The 

generic solutions and rules for calculation of coupling numerators with cross-feeds and/or higher-order 

systems are given in Ref. 29.  

Constrained Responses via Coupling Numerator Analysis 

The coupling numerator results presented in the previous section are interesting, but have limited 

utility given the modern tools available to most engineers. However, there is an interesting result that 

comes out of the coupling numerator analysis, which is helpful for approximating a single-input single-

output response, while considering other loops tightly constrained [31].  

Start by rearranging Eq. (4.16):  
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Now, considering that the responses are very tightly constrained, it is possible to calculate the 

response 
22

1133 
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


x
xx  as 2211,GG . Then, the constrained response can be represented by the 

coupling numerator terms:  
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This is the classic limiting form of the coupling numerator as presented in Ref. 31. This result can be 

extended to higher order systems with any number of control inputs by including appropriate coupling 

numerators. For example, in a 4th order system with 4 control inputs:  
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The tightly constrained response 
33

2211 





x
xx  can be calculated by following the same general pattern 

as in Eq. (4.18):   
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This result can be used to design the control system axis-by-axis, while accounting for the effects of 

coupling due to multiple loop closures. When all loops are then closed with well designed feedbacks, the 

responses are as expected – “a self-healing assumption” [47].  
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4.2 Derivation of State-Space Solution for Constrained Coupling Numerators 

The constrained coupling numerator solutions presented in the literature [30,31] are limited because 

they can only provide a single transfer function. For higher order systems, it would be useful to obtain a 

state-space representation with multiple inputs and outputs, with some but not all, of these inputs and 

outputs constrained. For example, it might be useful to obtain a state-space response with yaw rate 

constrained with pedal, and vertical velocity constrained by collective, and have outputs of lateral and 

longitudinal velocities, angular rates, and attitudes for lateral and longitudinal cyclic inputs.  

Recent work by Hess in 2003 [48] derives a numerical solution for the constrained coupling 

numerator transfer function, which is compatible with modern tools and does not require analytical 

derivation, but still only provides a SISO transfer function, not a full state-space solution. Thus, the lack 

of a state-space method has motivated the derivation of the solution herein.  

For the state-space approach, the derivation will be shown with the example from Sec. 4.4.1, as 

shown in Figure 4-1. Recall that the closed loop system is represented by the following state-space system 

(rearrangement of Eq. (4.12)): 
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Now, for the tightly constrained solution 2211,GG :  
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If solving this system of Eq. (4.24) using Cramer’s Rule for 3x , the solution would be identical to the 

traditional method of Eq. (4.18): 
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Instead, algebraic “dummy” states 21 , xx   are used to represent the model of Eq. (4.24) in the state space 

form, where:  
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 1111 xGx   (4.26) 

 2222 xGx   (4.27) 

 uxx
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Then the new A and B constrained coupling numerator matrices ( CNA , CNB ) can be calculated by 

multiplying the F and G matrices by M-1.  
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Then:  

 3CNCN xx BA  
 (4.32) 

This produces the same solution for 
22

1133 





x
xx as Eq. (4.18), as demonstrated by Eq. (4.25), but 

requires much less work manipulating transfer functions than those presented in Hoh [31], and in Hess 

[48].  

The general procedure for determining the constrained state-space response for a generic system is:  

1. Replace the column(s) of the constrained state(s) in the identity M-matrix with the B-matrix 

column(s) of the control(s) used to constrain the state(s).  

2. To create the F-matrix, zero out the column(s) of the A-matrix that correspond to the 

constrained state(s).  

3. The G-matrix is the B-matrix with column(s) of the constrained control(s) removed.   

4. Calculate the ACN and BCN by left multiplying the F and G matrices by M-1.  

This general constrained state-space ‘coupling numerator’ solution allows for MIMO design with 

some loops tightly constrained, rather than a strictly SISO transfer-function solution. As an example use 

of the state-space method to represent a MIMO system with any number of desired constrained input-

output pairs, consider the 4th order system of Eqs. (4.19)-(4.21).  

Then constraining 22 x  and 33 x , and using the general procedure outlined in Steps 1-4, the 

following state-space model structure results:  



36 

 


































































































































4

1

4441

3431

2421

1411

1

4342

3332

2322

1312

4

3

2

1

4441

3431

2421

1411

1

4342

3332

2322

1312

4

3

2

1

10

00

00

01

00

00

00

00

10

00

00

01




bb

bb

bb

bb

bb

bb

bb

bb

x

x

x

x

aa

aa

aa

aa

bb

bb

bb

bb

x

x

x

x









 

(4.33)

 

 

This state space model can be used to calculate 
33

2211 





x
xx , identically to the conventional result shown 

in Eq. (4.22). In addition, the same state-space structure gives 
33

2241 





x
xx , 

33

2214 





x
xx , and 

33

2244 
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


x
xx . This state-space model can now be used directly for control system design of 1x  and 4x  

responses, with the effects of coupling due to closure of the 22 x  and 33 x  loops taken into 

account.  

4.3 Coupling Numerators for the UH-60 

In a similar manner to that presented in Sec. 4.2, the effective single-axis responses are calculated for 

the lateral axis UH-60 with an external load. The state-space coupling numerator analysis described in the 

previous section is performed on the analytical linear model derived in Sec. 2.2.2. This model includes 

rigid-body, slung-load dynamics, and a 70ms time delay (Pade′ approximation) to represent effective 

rotor dynamics. This model with the time delay is valid from 0.1- 12 rad/s as shown in Figure 2-4 - Figure 

2-11.  The more complex FORECAST/OVERCAST model (Sec. 2.2.4) with explicit rotor-states will be 

used later in Chapters 5-7 to ensure that the rotor-modes are sufficiently damped. Here in Chapter 4, the 

simple analytical model (Sec. 2.2.2) is used to focus on the basic helicopter/load coupling dynamics 

without the added complication of the rotor modes, which are not needed to provide a valid frequency 

response over the frequency range of interest for load response and handling qualities (0.1 – 12 rad/s).  

The use of coupling numerator analysis allows for the examination of basic dynamic effects of 

fuselage and cable angle/rate feedback in a single-axis, without the added complication of designing 

control systems for the off-axis responses (which are unstable and highly coupled). The coupling 

numerator analysis is important because the stability of control system near the load mode is very 

sensitive to changes in phase near the load mode notch in the attitude response. Given that this region of 

the response is heavily influenced by coupling, it is important to use a coupling numerator result to take 

into account the coupling effect of multiple loop closures. The lateral axis was chosen because it is more 

affected by the load motions than the longitudinal axis due to its lower inertial configuration. In this work, 

the following responses are of interest:  
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where the pitch rate is tightly constrained by longitudinal cyclic  lonq  , the yaw rate is tightly 

constrained by the pedal  pedr  , and vertical velocity is tightly closed by collective  colw  .  

Comparisons of the bare airframe responses and the constrained (i.e. coupling numerator) responses 

for the roll attitude ( ) and load cable angle relative to the fuselage ( c ) are shown in Figure 4-2. The 

responses are not strongly affected by the closure of the off-axis loops over the 2-10 rad/s range, but are 

more influenced in the  0.1-1 rad/s where cross-axis coupling is prevalent. Most critically, the closure of 

off-axis loops effects the phase near the load mode (from 0.5 -1 rad/s), which strongly effects the stability 

of the load mode (because the broken loop typically has a 0dB crossing near this frequency due to the 

reduced magnitude near the load mode). Figure 4-2 also validates the state-space technique for 

determining the constrained coupling numerator result because the responses for the traditional transfer-

function coupling numerators and the state-space solution are identical (e.g. the dash and dotted curves 

overlay in Figure 4-2).  

An alternate method to coupling numerators can be to drop the coupling terms in the state-space 

matrix, to effectively calculate a SISO response. The results of this method are also shown in Figure 4-2. 

As seen in the figure, this method produces responses at low frequency that are not consistent with the 

bare airframe or the coupling numerator response. This is particularly true in the roll attitude response in 

Figure 4-2a, where the phase of the model with dropped coupling terms is not consistent with the 

coupling numerator result between 0.5-1.0 rad/s, which can greatly change the stability margin and 

damping of near the load mode. The coupling numerator result produces an effective single axis response 

that accounts for the coupling instead of eliminating it, which provides a better approximation for control 

design of multiple loops. 
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                                   (a)   lat                                                                     (b) latc   

Figure 4-2. lat and latc  with and without coupling numerator closure of the off-axis. 
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4.4 Root Locus for Fuselage and Load Feedbacks on a UH-60 

Now that the effective SISO coupling numerator responses have been determined, these responses 

can be used in any SISO control design technique. Herein, the single axis coupling numerator transfer 

functions for the lateral axis are used for compensator (H) design with root-locus and Bode plot 

techniques. The block diagram illustrating this method is shown in Figure 4-3. This method demonstrates 

the fundamental effects of different types of feedback on the helicopter/load dynamics, without needing to 

design a multi-loop system for the other control axes.  

Three designs are examined:  

 Fuselage Feedback Only 

 Combination of Fuselage and Cable Angle Feedbacks 

 Combination of Fuselage and Cable Rate Feedbacks 

w
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δcol
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δlonδlat δlat

φc

State-space constrained
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w
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Figure 4-3. Control block diagram using constrained coupling numerator response.  
 

4.4.1 Fuselage Feedback Only 

The effects of conventional fuselage feedback on the dynamic modes of the aircraft are seen in Figure 

4-4. As shown in Figure 4-4a, roll rate feedback tends to initially improve the roll mode, increasing its 

frequency (and therefore the effective bandwidth). Roll rate feedback also moves the Phugoid mode 

closer to the origin, but does not stabilize it, and tends to reduce the damping of the lateral load pendulum 

mode. Roll attitude feedback in Figure 4-4b tends to reduce the frequency of the roll mode (reducing the 

effective bandwidth), but stabilizes the Phugoid mode and damps the load pendulum mode.  Due to 

multiple constraints such as stability margin, disturbance rejection bandwidth, piloted bandwidth, etc., a 

combination of roll rate ( pk ), roll angle ( k ), and the integral of roll angle feedbacks (
i

k ) are required 

to provide a stable, and acceptably performing conventional control design for a helicopter [49]. As an 

example of a conventional feedback control system, combinations of these feedbacks are used to form a 

PID compensator (H) for roll attitude via classical control techniques. The compensator architecture has 

the following form:  
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The following gains proportions were used to provide the ideal k/s loop shape in the region of cross-over 

(1-3 rad/s):  

 8.0
k

k p
, 2.0





k

k
i  (4.36) 

Then the root locus was calculated to determine the proper value of k
 
in Figure 4-4c. The root locus 

indicates that increasing k  provides a higher frequency roll mode (improving the bandwidth), as well as 

considerable improvement in Phugoid stability. However, increasing gain in Figure 4-4c also results in a 

lightly damped load mode.  

After choosing a gain of 4k for the conventional PID feedback from Figure 4-4c, the closed-loop 

bode plots for the aircraft roll attitude and lateral cable angle were plotted in Figure 4-5. The closed-loop 

bode plot of Figure 4-5a indicates that the shape of the attitude response near the load mode are mostly 

unchanged as compared to the bare airframe. Although the closed loop gain has changed, the depth of the 

magnitude notch of the slung load mode on the attitude is only slightly reduced, and the frequency of the 

load mode is unchanged (no crossing of -135deg near the load mode). Therefore, according to the slung 

load handling qualities specification, described in Chapter 3 and Ref. 2, the maneuvering handling 

qualities with the external load have not greatly improved from the unaugmented case. The inertial 

referenced load motion ( c ) is larger and not as well damped as the unaugmented system, as indicated by 

the magnitude peak at the load mode (~1 rad/s) in  Figure 4-5b. This analysis shows that fuselage 

feedback did not provide improved handling qualities characteristics or load damping. 
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Figure 4-4. Root loci for fuselage feedback using constrained coupling numerators. 
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4.4.2 Fuselage and Cable Angle/Rate Feedback 

Cable angle and cable rate feedbacks are now added to fuselage feedbacks from the previous section 

in order to determine if handling qualities characteristics and/or load damping can be improved. The 

model provides states for the load cable parameters in a reference frame with respect to the fuselage. In 

this work, the inertial referenced cable angle c  is used for control feedback, as opposed to cable angle 

measured in a reference frame relative to the fuselage. In the single-axis example, the fuselage referenced 

roll cable angle c  is simply:  

 
  cc  (4.37) 

The roll attitude, relative cable angle, and inertial cable angles of Eq. (4.37) are illustrated in Figure 4-6.  
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Figure 4-5. Bode plot comparison between bare airframe and fuselage feedback using   
 constrained coupling numerators.        
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Figure 4-6. Illustration of roll attitude and cable angles.  
 

In the single axis case, a combination of roll attitude feedback and inertial cable angle feedback can 

be algebraically manipulated to be equivalent to a compensator that uses roll attitude feedback combined 

with relative cable angle feedback via the relationship in Eq. (4.37). Although the two methods can be 

identically configured, the inertial cable angle feedback is used herein to isolate the effect of the load 

swing on the control system. This also makes sense physically because the earth referenced (inertial) load 

swing response should be minimized in the hover/low speed configuration for precision load placement. 

Inertial cable rate feedback was also utilized in this analysis.  

Choosing  4k  from the root locus diagram in Figure 4-4c, and using the ratios for the rate and 

integral gains from Eq. (4.36), the characteristic equation with inertial cable angle feedback ck   is:  
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Solving in Evans Root Locus Form for the cable angle feedback term, to isolate Ck , results in Eq. (4.39):    
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In this root locus of Figure 4-7, the poles represent the system with only the fuselage feedback control 

systems, 0ck . As cable angle feedback gain Ck  increases, the closed loop poles change as shown in 

Figure 4-7a, which does not improve load damping but further improves Phugoid mode damping from the 
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baseline case. When using cable rate feedback ck   instead of angular feedback in Figure 4-7b, there is 

improved load damping, but a tendency for a lightly damped Phugoid mode. 

 
The results of cable angle and cable rate feedback on the closed loop fuselage roll attitude are shown 

in Figure 4-8. Cable angle feedback in Figure 4-8a provides a reduction (i.e. improvement) in the notch 

depth (smaller MAG) as well as flattens the magnitude response between 0.2-0.9 rad/s. These effects 

combine to make a smoother attitude response which will provide better piloted handling qualities 

according to the slung load handling qualities specification (described in Chapter 3). This feedback 

should effectively make the load feel “lighter” to the pilot (a lighter load has a shallower distortion as 

shown in Figure 3-1). In Figure 4-8b, the cable rate feedback creates a slightly deeper magnitude notch 

(largerMAG), implying the load would feel effectively “heavier” to the pilot, but will be better damped 

for load placement as shown in Figure 4-7b.  

So, despite the benefits of better load handling qualities related to the cable angle feedback, the load 

becomes poorly damped, as indicated by Figure 4-9a, which is consistent with the root locus shown in 

Figure 4-7a. The load response damping is improved with cable rate feedback, as indicated by the phase 

response in Figure 4-9b and the root locus of Figure 4-7a. There is also a large attenuation of the cable 

angle magnitude between 0.5-1.1 rad/s with increasing cable rate feedback as shown by Figure 4-9b. This 

indicates that the swing of the load will be much smaller with cable rate feedback.  
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Figure 4-7. Root loci for cable angle feedback using constrained coupling numerators. 
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Figure 4-9. Load response latc  bode plot for combined fuselage and cable angle/rate feedback using 

constrained coupling numerators. 
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Figure 4-8. Aircraft response lat bode plot for combined fuselage and cable angle/rate feedback 

using constrained coupling numerators. 
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These results indicate that cable angle feedback can be used to improve piloted handling qualities at 

the cost of a more lightly damped load response. The cable rate feedback does the opposite, providing a 

better damped load response, at the cost of degraded piloted handling qualities. This indicates that there is 

a fundamental trade-off between load damping and pilot handling qualities. The trade-off can be more 

fully explored via multi-objective optimization (in Chapter 5). 

4.5 Summary of Chapter 4 

In Chapter 4, the traditional constrained coupling numerator analysis for determining an effective 

SISO transfer function for a coupled MIMO system is described. This constrained coupling numerator 

analysis is then extended to a state-space solution which allows a MIMO analysis with some controls and 

states constrained. Finally, a basic analysis of helicopter/load dynamics was performed using Bode and 

Root-Locus methods for a simple feedback control system. This analysis explored how fuselage feedback, 

cable angle feedback, and cable rate feedback fundamentally affect the closed loop aircraft and slung load 

responses.  

The key contributions of Chapter 4 are: 

1. Development of a state-space solution for the constrained coupling numerator analysis. 

2. Identification of a trade-off between lateral aircraft handling qualities and load damping for the 

lateral axis.  

a. Cable angle feedback is associated with reduced (improved) distortion of the aircraft attitude 

response, which is associated with better predicted piloted handling qualities. However, cable 

angle feedback also decreased load damping.  

b. Cable rate feedback improved load damping but caused larger (worse) distortion of the 

aircraft attitude response, which is associated with degraded piloted handling qualities. 
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5 Attitude Command Cable Angle/Rate Feedback Control Law Design and 

Analysis 

The previous section explored the basic dynamics and trade-offs of a helicopter/slung load flight 

control system for a single-axis roll response with the off-axis responses tightly constrained. Now, the 

FORECAST/OVERCAST full-order, fully-coupled linear model presented in Sec. 2.2.4 is used for the 

control design of an explicit model following control system with fuselage, cable angle and cable rate 

feedbacks. The coupling numerator results from Chapter 4 are used to guide the control optimization 

design strategy. The FORECAST/OVERCAST model was used here in Chapter 5 because it contains the 

explicit rotor-states, as opposed to the quasi-steady rotor of the analytical linear model (Sec. 2.2.2) that 

was used to study basic control feedback trade-offs in Chapter 4.  It is important to consider the effects on 

the rotor dynamic modes in control design optimization because it is possible to inadvertently de-stabilize 

these modes, particularly for high gain/high bandwidth designs.  

The control system design in this chapter focuses on the piloted response. This section does not 

include the advanced hold modes such as velocity hold, position hold, or altitude hold that are included 

later on in Chapter 7.  This chapter instead focuses on developing a well designed attitude command 

system, from which these advanced modes can be built upon.  

5.1 Description of Architecture 

The explicit model following control system architecture was chosen because it is an excellent 

approach for achieving handling qualities and feedback requirements for helicopters [49]. One key benefit 

of this architecture is that the bandwidth is set via the command model in the feed-forward path, 

independently of the feedback path, which sets disturbance rejection characteristics and stability margins. 

This is referred to as a two degree-of-freedom (2-DOF) architecture class [50]. In contrast, for a 

conventional single degree-of-freedom (1-DOF) feedback control system the bandwidth and disturbance 

characteristics are dependent upon one another, so increasing the disturbance rejection could result in an 

overly aggressive closed loop bandwidth. 

5.1.1 Notational Examples of Control Architectures 

In order to demonstrate the basic functionality and benefits of a model following architecture (2-

DOF) as compared to a conventional feedback architecture (1-DOF), simple notional block diagrams are 

provided in Figure 5-1. 
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(b) Explicit model following control system (2-DOF) 
 

Figure 5-1. Simplified 1- and 2- DOF control system block diagrams. 
 

An example conventional 1-DOF block diagram is shown in Figure 5-1a. This 1-DOF block diagram has 

simple feedback compensation, with no feed-forward components. The system has a generic plant, P, 

and compensator, H. High frequency dynamics of the plant such as actuators, rotor, sensor and filter 

dynamics are represented by an effective time delay block,  . The control ( uy ) and the disturbance 

( dy ) response characteristics are inherently coupled via the parameters of the compensator (H): 

  



HP

HP

u

y




1
 (5.1) 

 
HPd

y




1

1
 (5.2) 

The inherent coupling (both have dependence on HP) of the disturbance and control responses are 

characteristic of a 1-DOF system described in Ref. 50.  

A simple example of the 2-DOF explicit model following architecture is shown in Figure 5-1b. The 

command model, CM, describes the desired response. The inverse plant model P-1 inverts the dynamics of 

P in the feed-forward path. In order to explain the model following concept, assume that the inverse plant 

model P-1 perfectly inverts the plant dynamics, e.g. PP-1=1. Then the control response is independent of 

the compensator H and the plant P, and is set by the command model (and non-inverted time delays): 

  CM
u

y
  (5.3) 
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Note that the time delay block   is not inverted in P-1, to avoid overdriving the actuator. Thus, the use of 

the time delay in the command path is critical to ensure that the command and the response remain 

synchronized, when time delays are present.  

The disturbance response characteristic for the 2-DOF system is set by the plant P and compensator H 

dynamics (equivalent to 1-DOF disturbance response):  

 
HPd

y




1

1
 (5.4) 

Thus, the disturbance and control response characteristics are decoupled, which is consistent with the 2-

DOF model structure of Ref. 50. Thus, one key benefit of this architecture is the ability to set disturbance 

rejection and command model bandwidths independently. An additional benefit of the model following 

architecture is that the feed-forward inverse plant off-loads the feedback, which is not needed except in 

the case of the disturbances and, in practice, to compensate for errors in the inverse plant.  

5.2 Explicit Model Following Architecture with Cable Feedback 

The explicit model following architecture used in this work has the structure of Figure 5-2 - Figure 

5-5, as implemented with cable angle/rate feedbacks in the lateral and longitudinal axes.  There are no 

cable angle/rate feedbacks to the pedal and collective. Although each axis of the controller is shown 

independently in Figure 5-2- Figure 5-5, for clarity, all controllers are simultaneously closed around the 

MIMO bare airframe state-space UH-60 model.   
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Figure 5-2. Lateral controller architecture. 
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Figure 5-3. Longitudinal controller architecture. 
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Figure 5-4. Yaw controller architecture. 
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Figure 5-5. Heave controller architecture. 
 

The structure of the model following controller and the purpose of each block are described in detail 

in Ref. 36. The following sub-sections provide a brief overview of the elements of the model following 

control system as implemented herein. 

5.2.1 Command Model 

The command model calculates the desired fuselage response for a given stick input.  The command 

model sets the steady-state value of response per inches of pilot input (stick sensitivity), dictates the 

response type, and determines the desired closed loop bandwidth of the system. The response types, 

maximum response attitudes/rates (which can be used to set the stick sensitivity), and bandwidths that 
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have been found to produce good handling qualities in rotorcraft are described in ADS-33E-PRF [21]. 

The command models herein were developed to adhere to the guidelines in ADS-33E-PRF.  

For the roll-attitude command ( cmd ), a second order attitude command system is implemented via 

the command model:  

  









5.2,1

5.2
12

2

nlat

cmd




(deg/in) (5.5) 

The roll axis stick sensitivity is 12 deg/in. The lateral cyclic has a throw of +/-5 inches, which allows for 

piloted commands of +/-60 deg of roll attitude at maximum. This meets the ADS-33 moderate agility 

Level 1 requirement for +/-60 deg of large amplitude attitude change for roll [21].  The natural frequency 

and damping ratios are from ADOCS (Advanced Digital Optical Control System), as they provided 

acceptable handling qualities in flight [51].   

The pitch-attitude command ( cmd ) also uses a command model that is second-order and the attitude 

command response type:   

  









2,1

2
6

2

nlon

cmd




(deg/in) (5.6) 

The pitch sensitivity is 6 deg/in, for a total maximum command of +/-30 deg/in of pitch attitude (+/- 5 

inches longitudinal cyclic travel). This meets the ADS-33 moderate agility requirement for +20,-30 

degrees of large amplitude pitch attitude response [21].  Again the command model natural frequency and 

damping are based on the ADOCS control laws.  

The yaw axis is a rate command/heading hold response type. This provides the pilot the ability to 

command a yaw rate for a given pedal input, and then hold the desired heading upon releasing the pedals. 

This is a natural method for heading control and is recommended by ADS-33E-PRF. The yaw rate 

command ( cmdr ) model is first order:  

 








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14.0

1
8.8

s

r

ped

cmd


deg/s/in (5.7) 

The control sensitivity of 8.8 deg/s/in provides a maximum yaw rate of +/-22deg/s (+/- 2.5 inches of 

pedal travel). This meets the requirement for moderate agility in ADS-33 for large amplitude directional 

response. For the yaw axis, the ADOCS command model time constant is not used. The time constant in 

the present control laws is higher than ADOCS to meet the bandwidth requirements of ADS-33E-PRF 

with the slung load configuration.  

The heave axis response type is vertical velocity command/pseudo altitude hold. The collective input 

provides a proportional response in vertical velocity. Then at trim the altitude is held with a pseudo 

altitude hold, which is implemented via an integrator in the control feedback loop. In the section on the 
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task-tailored advanced control laws (Chapter 7), a true altitude hold is included by wrapping an altitude 

feedback loop around the vertical velocity loop. The vertical velocity command ( cmdw ) model is first 

order:  

 
1

1
)667.6(




s

w

col

cmd


ft/s/in (5.8) 

The collective sensitivity is set to allow for a maximum climb or descent rate of +/-2000ft/min (+/- 5 

inches of collective travel). This collective control sensitivity was tuned based on pilot opinion. The time 

constant was set to meet the ADS-33 heave response requirement for hover/low speed. 

5.2.2 Low Order Inverse 

The low order inverse provides an estimate of the control input (e.g. 
estlon ) required to achieve the 

desired response (e.g. cmdq ). This inverse is a feed-forward component that provides a faster initial 

response, and then errors in the resulting response are eliminated via the feedback path.  The inverse is 

first-order for all axes. A first-order model fit is chosen due to its simplicity, and because a second-order 

inverse tends to produce a jerky response on the UH-60 [36]. This first-order inverse is calculated from a 

low order fit of the aircraft response in the frequency domain, which is then inverted.  An example first-

order model fit is shown in Figure 5-6 for the pitch rate. Note that an additional time delay is also 

included in this model fit shown in Figure 5-6 in order to better match the phase, but this time delay is 

used on the command path only (and is not inverted) as described in the following section (Sec. 5.2.3). 

The slung load mode was not inverted in the longitudinal and lateral responses because the inverse model 

would have to be gain scheduled with different load mass and sling lengths. This results in a mismatch 

between the inverse plant model and the aircraft response near the pendular frequency, as exemplified in 

Figure 5-6 from 0.5-1.5 rad/s.  

For this first-order inverse model, the pitch axis inverse has the form:  

 
A

Bs

qcmd

lonest 



 (5.9) 

Although this is an improper frequency response, it is easily implemented through block diagram 

arithmetic:  

  cmdcmdlon Bqq
Aest

 
1  (5.10) 

Where cmdq  is approximated by the derivative of Eq. (5.6), and cmdq  is the 2nd-derivative of Eq. (5.6). 

This is easily implemented via block diagram manipulation as shown in Fujizawa [36]. The roll, yaw, and 

heave inverse models follow a similar form to the pitch axis example shown in Eqs. (5.9)-(5.10). The 

inverse models used herein are given in Table 5-1.  
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Table 5-1. Inverse parameters.  

Control Axis A B 

Lateral 1.95 4.69 

Longitudinal .406 .533 

Pedal .453 .2423 

Collective -6.31 .319 
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Figure 5-6. First order model fit for pitch rate.  
 
5.2.3 Effective Time Delay 

The effective time delay in the command path (that sums with the feedback) accounts for the rotor, 

filter, and computational delays that are inherent in the aircraft. The time delay is not used on the inverse 

path as shown in Figure 5-2 - Figure 5-5. This time delay does not effect stability margins because it is in 

the forward command path (not feedback). The actual time delay in the feedback path is part of the 

dynamics of the system (not the controller), and does effect stability margin. The presence of the 

command delay improves overshoot, reduces actuator activity, and increases model following 

performance [52]. For rotorcraft these values can be rather large due to the effective ~70ms time delay of 

the rotor and the heavy filtering that must be performed on the feedback paths (due to the high vibration 

environment). The time delays used herein are given in Table 5-2.  
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Table 5-2. Command path time delays.  

Commanded variable Time delay on command (s) 

cmdcmd p,  0.093, 0.13 

cmdcmd q,  0.097, 0.12 

cmd , cmdr  0.099, 0.12 

cmdw  0.10 

 
5.2.4 Fuselage Feedback 

Fuselage feedback is used to compensate for errors in the inverse model, provides gust rejection and 

stabilizes the hovering cubic (low frequency unstable Phugoid-type mode). The architectures of the 

fuselage feedbacks in the four control axes are shown by Figure 5-7 - Figure 5-10. The pitch, roll, and 

yaw axis control systems are effectively proportional, integral, derivative (PID) type compensators. The 

heave axis control system is a proportional, integral (PI) type compensator. 
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Figure 5-7. Lateral fuselage feedback. 
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Figure 5-8. Longitudinal fuselage feedback. 
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Figure 5-9. Directional fuselage feedback. 
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Figure 5-10. Heave fuselage feedback.  
 

5.2.5 Load Cable Angle/Rate Feedback 

The feedbacks of measured load states are used to improve handling qualities and stability margin 

with an external load, and also increase load damping.  The architectures for the cable angle/rate 

feedbacks, which are only used in the lateral and longitudinal axes, are shown in Figure 5-11 and Figure 

5-12. The controller uses inertial cable angle and rate feedback. The cable angle feedback is fed through a 

washout to eliminate feedback of the trim non-zero cable angle that occurs due to drag as the aircraft 

increases forward speed. The output of the load feedback controller sums with the output of the fuselage 

feedback controller as shown in Figure 5-2 and Figure 5-3. 
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Figure 5-11. Lateral cable angle/rate feedback. 
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Figure 5-12. Longitudinal cable angle/rate feedback. 
 

5.3 Control Design Requirements 

The control system was designed to meet the requirements for ADS-33E-PRF Level 1 handling, 

stability margins, disturbance rejection, and external load handling qualities (described in Chapter 3). The 

design specifications of Table 5-3 were chosen to ensure that the control system would have the desired 

flying qualities. More background on many of these specifications is provided in Ref. 49.   

There are many specifications that must be simultaneously achieved in order to provide a system with 

desirable flying qualities and a total of 15 feedback gains that must be chosen to meet these requirements. 

This is a difficult problem to be solved with classical control techniques, which offers no direct way to 

assess and tune all these requirements simultaneously. Therefore, the control gains are determined with a 

direct multi-objective parameter optimization technique. This technique provides a Pareto-optimal 

solution that meets the requirements while minimizing actuator usage [49]. 
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Table 5-3. Control system design specifications. 

Specification 
(CONDUIT ® Name) 

Description 
Constraint 

Type 
Axes 

EigLcG1 Eigenvalues in left-half plane [1] Hard Pitch, Roll, 
Yaw, Heave 

StbMgG1 Gain and phase margin (45 deg, 6 dB) [53] Hard Pitch, Roll, 
Yaw, Heave 

BnwPiH1 Pitch bandwidth for acquisition and 
tracking, attitude command requirements 
(ADS-33) [21] 

Soft Pitch 

BnwRoH2 Roll bandwidth for other M.T.E.’s, attitude 
command requirements (ADS-33) [21] 

Soft Roll 

BnwYaH1 Yaw bandwidth for acquisition and tracking 
(ADS-33) [21] 

Soft Yaw 

BnwPiS1 Pitch external load handling qualities criteria 
(Chapter 3) [2] 

Soft  Pitch 

BwnRoS1 Roll external load handling qualities criteria 
(Chapter 3) [2]                                                  
Relaxed boundaries allow slightly into Level 
2 if needed for Load Damping case 

Soft Roll 
 

CouPRH2 Coupling between pitch and roll [21] Soft Pitch/Roll 

CouYaH2 Coupling between collective and yaw [21] Soft Yaw 

DmpTmG1 Time domain load damping criteria [21] Soft Pitch, Roll 

DstBwG1 Disturbance rejection bandwidth [54] Soft Pitch, Roll, 
Yaw, Heave 

DstPkG1 Disturbance rejection peak magnitude[49] Soft Pitch, Roll, 
Yaw, Heave 

EigDpG2 Damping ratio [21] Soft Pitch, Roll, 
Yaw, Heave 

FrqHeH1 Heave response bandwidth [21] Soft Heave 

HldNmH1 Normalized attitude hold response to 
disturbances [21] 
 

Soft Pitch, Roll, 
Yaw 

ModFoG2 Performance of aircraft as compared to 
command model (model following) [36] 
 

Soft Pitch, Roll, 
Yaw, Heave 

OlpOpG1 Open loop onset point specification for pilot 
PIO due to actuator rate limiting [55] 

Soft Pitch, Roll, 
Yaw, Heave 
 

TrkErG1 RMS of load response in turbulence  Soft Pitch, Roll 

CrsLnG1 Minimizes cross-over frequency [49] Summed 
Objective 

Pitch, Roll, 
Yaw, Heave 

RmsAcG1 Minimizes actuator RMS [49] Summed 
Objective 

Pitch, Roll, 
Yaw, Heave 

 
5.4 Optimized Control Design 

The CONDUIT® software is used to optimize the fuselage and load feedback gains. CONDUIT®, the 

Control Designers United Interface, is a computational software package for aircraft flight control design, 

evaluation and integration [56]. CONDUIT® is a useful tool that combines the control system design 
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process with the handling qualities requirements and servo-loop specifications compliance into one step. 

The control system is designed to meet these specifications with minimal control usage.  

CONDUIT® solves the design problem in 3 phases with associated specifications grouped into the 

three categories that define how the optimization prioritizes each requirement. The categories are known 

as Hard Constraints, Soft Constraints, and Summed Objectives. The specifications used for the 

optimization of the flight control system in this research are grouped into these categories as indicated by 

the Constraint Type in Table 5-3. Hard constraints are considered in the first phase of the optimization. 

The set of Hard Constraints included requirements crucial to the stability of the aircraft (Eigenvalues in 

left-half plane and stability margins). This limits all potential designs to those that are stable. During the 

second phase of the optimization soft constraints, which include handling qualities and performance 

criteria, must be satisfied while simultaneously ensuring that the Hard Constraints remain satisfied. The 

last phase of the optimization begins once all of the Hard and Soft Constraints are met. The optimization 

minimizes a set of Summed Objectives during this phase while ensuring that all other specifications 

continue to be met, a Pareto-optimal solution. Actuator RMS and crossover frequency are chosen as 

summed objectives to minimize control usage.  

Based on the results of the coupling numerator study in Sec. 4.4, the trade-off between load damping 

and handling qualities is used to guide the design optimization strategy. The results of the coupling 

numerator study indicated that two separate control systems for cable angle/rate feedback should be 

designed, one focused on pilot handling and one focused on load damping, because these two 

configurations could not be simultaneously achieved in the coupling numerator study. Ultimately three 

flight control systems (two cable angle/rate systems, and one fuselage only system) were optimized to the 

required specifications in Table 5-3:  

1. “Baseline Control System” – This control system is optimized to provide the best control system 

possible with conventional fuselage feedback only. This system does not use cable angle 

feedback because it is meant to provide a baseline for comparison against the cable angle 

feedback control systems. By using the same architecture and optimizing against the same 

requirements, it provides the best possible comparison case for the two cable angle feedback 

designs.  

2. “Load Damping Control System” – This control system attempts to meet the specifications while 

maximizing the external load damping. This control system uses fuselage, cable angle, and cable 

rate feedback.  

3. “Pilot Handling Control System” – This control system provides the best piloted handling 

qualities possible by using the cable angle and rate feedback to smooth the attitude response, such 

that it better tracks the command model response and thus minimizes the effect of load swing on 
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the helicopter’s attitude response. The control system must also simultaneously meet all other 

design specifications. 

5.4.1 Explanation of Configuration 

The configuration optimized for the purpose of these initial attitude command studies was a 79ft 

configuration with a 5000lb sling. This configuration represents a very poor handling qualities 

configuration as shown in Figure 3-2. Thus, the benefits demonstrated by including cable angle/rate 

feedback represent an extreme in possible improvements in handling qualities, due to the very poor 

baseline configuration. This configuration was chosen for the piloted simulation in Chapter 6 to ensure 

that the effect of the load would be very noticeable to the pilot in the fixed base environment.  In Chapter 

7 and beyond, a shorter sling at 56ft is used for flight control design and flight test, which also has poor 

handling qualities but is slightly better than the 79ft configuration. The switch of configurations was 

performed for practical flight test safety reasons, but the same general trade-offs and trends are very 

similar, as described in Chapter 7. 

5.4.2 Optimized Results – 79ft Sling, 5000lb Load 

Comparisons of key specifications are provided for the three optimized designs in Table 5-4 and 

Table 5-5 for the pitch and roll axes (which use cable angle/rate feedback). The heave and yaw results are 

shown in Table 5-6 and Table 5-7. The three designs are nearly identical in the yaw and heave axes 

because the control system was optimized with the same feedback gains (no cable angle/rate feedback in 

yaw or heave) to the same requirements for all three designs in these axes. All stability margins and cross-

over frequencies of Table 5-4 - Table 5-7 are for responses with loops broken at the actuators. The closed-

loop model following cost described in these tables is a weighted, least-squared average of the magnitude 

and phase errors between the commanded and actual responses [36].  A lower model following cost 

indicates a better match between the commanded and actual responses. In general a cost below 100 is 

desired for an unloaded aircraft, but for the external load case the response generally has some distortion 

near the load mode, which results in model following costs higher than 100. 

 
Table 5-4. Key pitch axis metrics.  

 
Gain 

Margin 
Phase 

Margin 
Cross-over 

Model 
Following 

MAG 
Load HQ 

spec

-135 
Load HQ 

spec 

Load 
Damping 

Ratio 

dB deg rad/s Cost dB rad/s nondim 

Baseline 14.24 45.74 2.23 330.33 9.23 0.72 0.12 

Pilot 
Handling 

13.77 45.77 2.26 178.02 7.16 0.72 0.13 

Load 
Damping 

13.15 49.09 2.28 384.49 12.15 0.69 0.29 
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Table 5-5. Key roll axis metrics.  

 
Gain 

Margin 
Phase 

Margin 
Cross-over 

Model 
Following 

MAG 
Load HQ 

spec

-135 
Load HQ 

spec 

Load 
Damping 

Ratio 

 dB deg rad/s Cost dB rad/s nondim 

Baseline 5.21 33.88 5.43 254.09 6.73 0.72 0.093 

Pilot 
Handling 

6.08 45.39 4.75 168.58 5.42 0.69 0.13 

Load 
Damping 

7.11 69.49 4.51 1233.58 13.77 0.46 0.27 

  
Table 5-6. Key heave axis metrics.  

 
Gain 

Margin 
Phase 

Margin 
Cross-over 

Model 
Following 

dB deg rad/s Cost 

Baseline 16.62 86.57 1.02 37.93 

Pilot 
Handling 

16.17 86.30 1.07 36.71 

Load 
Damping 

16.55 86.24 1.02 37.92 

 
Table 5-7. Key yaw axis metrics.  

 
Gain 

Margin 
Phase 

Margin 
Cross-over 

Model 
Following 

dB deg rad/s Cost 

Baseline 13.88 57.56 2.25 83.76 

Pilot 
Handling 

13.78 57.48 2.28 84.69 

Load 
Damping 

13.97 58.13 2.20 92.94 

 
Table 5-5 shows the Baseline control system cannot achieve more than 33 degrees of phase margin in 

the lateral axis, and has 5.2dB of gain margin, which violates AS94900 [53]. In contrast, for both the 

Load Damping and Pilot Handling control systems the stability margins meet the requirement for 45 

degrees of phase margin and 6dB of gain margin in AS94900 by introducing cable feedback. This 

indicates that cable angle/rate feedback can provide improved phase margins for the UH-60. The cross-

over frequencies are not greatly affected by the cable feedback.  

 Figure 5-13 shows the predicted slung load handling qualities specification (described in Chapter 3) 

for the three control systems. Recall that the area in the upper left of the specification is the poor handling 

qualities region. The predicted handling qualities of Figure 5-13 for the Baseline control system are 

acceptable in the roll axis, but are at the boundary for poor predicted handling qualities in the pitch axis. 

As shown in the Table 5-4 and Table 5-5, the Pilot Handling control system has the lowest model 

following cost in both the pitch and roll axes, indicating that it performs the most like the desired low 
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order command model dynamics. The improved model following of the Pilot Handling case, and 

associated minimal distortion MAG contributes to improved predicted handling qualities for roll and pitch 

axis, bringing the pitch axis well into the acceptable region of Figure 5-13. The Pilot Handling control 

system has about the same load damping ratio as the Baseline case in the pitch axis but exhibits improved 

load damping ratio in the roll axis, as shown in Table 5-4 and Table 5-5. The Load Damping control 

system provides the highest load damping ratio, but very poor model following, as shown in the tables. 

The distortion MAG of the attitude response is much worse for the Load Damping control system, 

indicating degraded predicted handling qualities in Figure 5-13.   

Example closed-loop frequency and time responses in Figure 5-14 and Figure 5-15 illustrate the 

trade-offs between the three control system designs. Figure 5-14a overlays the closed loop roll attitude 

and lateral cable angle responses in the frequency domain. As shown in the figure, the Baseline roll 

attitude frequency response has poor model following near the load mode, with an overshoot distortion 

between 0.2-0.7 rad/s, and a notch distortion from 0.7-1.3 rad/s. Figure 5-14a also shows that the closed-

loop attitude response matches the command model best with the Pilot Handling control system. The 

Load Damping has a large notch in the magnitude response that causes the largest distortion of all three 

control systems with respect to the command model, and causes the associated poor model following cost 

(Table 5-5) and degraded predicted handling qualities (Figure 5-13). The roll attitude time responses of 

Figure 5-15a are consistent with the frequency domain results, where Pilot Handling has the response 

closest to the command model. The Load Damping roll attitude response has several oscillations during 

the time domain pulse maneuver of Figure 5-15a, and overall is very inconsistent with the command 

response.  

In contrast to its poor attitude response characteristics, the Load Damping case demonstrates the best 

damped cable angle responses in the frequency and time domain, as shown in Figure 5-14b and Figure 

5-15b. The Baseline case has the largest cable angle peak in the frequency domain (Figure 5-14b), and as 

expected, is poorly damped in the time domain (Figure 5-15b). The Pilot Handling case improves the 

peak load magnitude slightly as compared to the Baseline in Figure 5-14b, and demonstrates slightly 

improved load response over the Baseline in the time domain response of Figure 5-15b.  

The time and frequency domain results demonstrate a clear trade-off between load damping ratio and 

piloted handling qualities for the cable angle/rate feedback designs. These two configurations cannot be 

achieved simultaneously. A simple physical explanation for this trade-off is that the single control 

actuator, the rotor, cannot simultaneously control the two bodies independently. These trade-off results 

are consistent with the simple single axis results in Figure 4-8 and Figure 4-9, where the Pilot Handling 

control laws closely resemble the cable angle feedback cases and the Load Damping results are similar to 

the cable rate feedback.   
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The optimized control gains for the three designs are given in Table 5-8 - Table 5-10. As indicated by 

Table 5-10, the Pilot Handling control system relies heavily on cable angle feedback, while the Load 

Damping control system uses both cable angle and rate feedbacks. For the Pilot Handling control system, 

the optimization of the cable angle rate feedback parameter results in a small value (1e-4). 
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Figure 5-13. Slung load handling qualities specification for three optimized control systems.  
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Figure 5-14. Closed loop Bode plot overlays for three optimized control systems.  
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Table 5-8. Fuselage feedback gains in the pitch and roll axes. 

Roll Axis Fuselage Gains Pitch Axis Fuselage Gains 

 
pK  

(in-s/rad) 
K  

(in/rad) 
i

K  

(in/rad-s) 
qK  

(in-s/rad) 
K  

(in/rad) 
i

K  

(in/rad-s) 
Baseline 1.86 14.40 0.10 3.59 7.64 0.30 

Load Damping 2.98 8.32 0.10 4.52 7.28 0.30 

Pilot Handling 1.40 13.44 0.10 3.93 7.83 0.30 
 

Table 5-9. Fuselage feedback gains in the yaw and heave axes. 

Yaw Axis Fuselage Gains Heave Axis Fuselage Gains 

 
rK  

(in-s/rad) 
K  

(in/rad) 
i

K  

(in/rad-s) 
wK  

(in-s/ft) 
iwK  

(in-s/ft) 
Baseline 4.28 5.85 0.5 0.22 0.125 

Load Damping 4.32 5.99 0.5 0.23 0.125 

Pilot Handling 4.21 5.91 0.5 0.23 0.125 
 

Table 5-10. Load feedback parameters.  

Roll Axis Load Gains Pitch Axis Load Gains 

 
Cable Rate 
(in-s/rad) 

Cable Angle 
(in/rad) 

Cable Rate 
(in-s/rad) 

Cable Angle 
(in/rad) 

Baseline 0 0 0 0 

Load Damping 7.89 8.07 1.41 2.56 

Pilot Handling 0.0001 3.98 0.0001 1.24 
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Figure 5-15. Time responses for three optimized control systems. 
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5.4.3 Robustness of Optimized Results to Load Configuration 

The three optimized control systems were designed for a single sling length (79ft) and load mass 

(5K). The stability robustness of the designs was analyzed for alternate sling length and load masses. The 

range of sling lengths analyzed for robustness was from 16ft to 96ft. Load masses from 1K to 6K were 

analyzed. The minimum stability margins considered safe for flight are 4dB and 30deg. For all cases 

analyzed, the gain margins were in the range acceptable for flight, greater than 4dB. The phase margin 

was the limiting factor, with some configurations having less than 30deg. The phase margins are shown 

for the three control system designs in Figure 5-16 - Figure 5-18.  

The Baseline control laws are most sensitive to load mass as shown in Figure 5-16. The 6K load has 

the lowest margins for both the lateral and longitudinal axes for the Baseline control laws. In the lateral 

axis, the Baseline control laws generally do not meet margin requirement for the 6K load (just meets the 

requirement for 56ft sling), or the 16ft sling (only meets stability requirement for the 1K load).  For the 

two cable feedback control systems, shown in Figure 5-17 and Figure 5-18, the stability is not as sensitive 

to load mass, but is quite sensitive to shorter sling lengths (16ft). Both the Pilot Handling and Load 

Damping control laws meet the margin requirements in both axes for 36ft – 96ft slings, for load masses 

between 1000-6000 lbs. This represents a wide range of configurations, and most importantly could be 

flown without gain scheduling by simply limiting the sling length to a minimum of 36ft for operations 

with cable angle feedback, as clearly the stability margins for the 16ft sling are not acceptable. The 16ft 

sling would require a separate set of control gains to meet stability margin requirements. Alternately, to 

use the Baseline control laws would require a limit on load mass and sling length to maintain acceptable 

margins without gain scheduling. A limit on load mass would effectively limit the operational capability 

of the aircraft. 



64 

 

0

10

20

30

40

50

60

16 36 56 76 96

P
h

as
e 

m
ar

g
in

 (
d

eg
)

Sling length (ft) 

1K load 3K load 6K load Required margin  
(a) Longitudinal axis 

 

0

10

20

30

40

50

60

P
h

as
e 

m
ar

g
in

 (
d

eg
)

1K load 3K load 6K load Required margin

16 36 56 76 96
Sling length (ft) 

 
(b) Lateral axis  

 
Figure 5-16. Robustness of Baseline control laws to external load configuration. 



65 

 

0

10

20

30

40

50

60

P
h

as
e 

m
ar

g
in

 (
d

eg
)

1K load 3K load 6K load Required margin

16 36 56 76 96
Sling length (ft) 

 
(a) Longitudinal axis    

   

 

 

 

 

0

10

20

30

40

50

60

P
h

as
e 

m
ar

g
in

 (
d

eg
)

1K load 3K load 6K load Required margin

16 36 56 76 96
Sling length (ft) 

 
(b) Lateral axis 

 
Figure 5-17. Robustness of Pilot Handling control laws to external load configuration. 
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Figure 5-18. Robustness of Load Damping control laws to external load configuration. 
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5.5 Summary of Chapter 5 

Chapter 5 describes the architecture and design methods for development of an explicit model 

following control system with fuselage, cable angle, and cable rate feedback. Multi-objective design 

optimization techniques are used to optimize the feedback gains to simultaneously meet the stability, 

handling qualities, and disturbance rejection requirements for a helicopter and minimize actuator activity. 

Three control systems are optimized: (1) Baseline configuration - Fuselage feedback only, (2) Pilot 

Handling configuration - Fuselage, cable angle, and cable rate feedback, optimized for pilot handling 

qualities, (3) Load Damping configuration - Fuselage, cable angle, and cable rate feedback, optimized for 

load damping.  

The key contributions of this chapter include: 

1. Handling-qualities/load-damping trade-offs for cable angle/rate feedback from the coupling 

numerator analysis in Chapter 4 using the simplified model are consistent with the full-order 

coupled MIMO design with explicit model following architecture used here in Chapter 5.  

2. The required 45deg phase margin and 6dB gain margin is achieved when using cable angle/rate 

feedback for both Pilot Handling and Load Damping configurations. The Baseline configuration 

does not meet the requirement in the lateral axis.  

3. Robustness studies of the three control system designs indicate that both Pilot Handling and Load 

Damping cable angle/rate feedback designs are more robust to changes in load mass than the 

Baseline fuselage feedback configuration. 
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6 Nonlinear Pilot in the Loop Simulation 

Evaluation of the three control systems designed in Chapter 5 in a nonlinear environment was pursued 

with two objectives: to determine if benefits developed in the linear environment would transfer to a 

nonlinear full envelope flight simulation, and to perform realistic piloted simulation. Evaluating the 

performance of the system in a nonlinear environment was an important step to ensuring flight readiness. 

Additionally, the piloted simulation was important to collect pilot comments on perceived differences 

between the Baseline (fuselage only), Pilot Handling (cable angle) and the Load Damping (cable 

angle/rate) feedback systems.  

The GenHel nonlinear model of the UH-60 and external load, discussed in Sec. 2.2.3, was used for 

the nonlinear dynamics simulation. To provide a visual environment, the RIPTIDE® software is used to 

realize real time, visual, full-flight-envelope pilot in the loop simulation [57]. RIPTIDE® provides the 

integration between the SIMULINK control system, GenHel, visual environment, and pilot inceptors. 

6.1 Validation of Control System in Nonlinear Environment 

To ensure that the nonlinear simulation with the control system engaged would behave as predicted in 

the linear environment, a validation of the nonlinear system against the linear system was performed by 

comparing responses in the frequency domain. In order to determine frequency responses from the 

nonlinear simulation, a frequency sweep was injected into the pilot inceptor. The aircraft and load 

responses were measured as a result of the sweep inputs. Then, the data is transformed to the frequency 

domain via the ChirpZ transform using the CIFER® software [45]. This method ensures that the linear 

frequency domain handling qualities predictions are consistent with the nonlinear simulation. In order to 

provide a good validation, the linear model must be an accurate representation of the nonlinear model, 

and the integration between the nonlinear model and control system must be correctly implemented in the 

nonlinear environment.   

The validation was sufficiently accurate in all axes, as demonstrated for the roll attitude and cable 

angle responses in Figure 6-1 and Figure 6-2. There is excellent agreement near the load mode (~0.9 

rad/s), which is of key importance to this study. The small discrepancy between 5-8 rad/s is due to an 

effectively more heavily damped rotor flap regressing mode in the nonlinear simulation. This should not 

have a large effect on the handling qualities because the differences are small in the frequency of 

predominate pilot operation, which typically does not exceed 1-3 rad/s (as verified by pilot cutoff 

frequencies calculated in Sec 6.5). 
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Figure 6-1. lat closed loop validation of nonlinear responses for Pilot Handling FCS.  
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Figure 6-2. latc  closed loop validation of nonlinear responses for Pilot Handling FCS. 



70 

6.2 Description of Fixed-Base Simulator 

Given the good agreement between the linear and nonlinear simulation models, the next step was to 

test the control systems with a pilot in the loop to determine whether the predicted results from the linear 

analysis in Chapter 5 were realized. The simulation was performed at the US Army Aeroflightdynamics 

Directorate fixed-base Human Factors Simulation Cab at Ames Research Center. This cab uses a side-

stick for longitudinal and lateral controls, and conventional pedal and collective. Although the actual 

RASCAL UH-60 helicopter has a center stick configuration, this simulation still allows compare and 

contrast of the relative performance of the control systems.  

The simulator display is shown in Figure 6-3. There is a standard forward view (window A) and the 

UH-60 CAAS display panel (window B). The load is displayed to the pilot in a downward view (window 

C), as though a camera were looking down at the load. This is in fact the view as seen by the crew chief, 

who watches the load motion via an open hatch in the back of the UH-60. This display is used here to 

provide the pilot a load motion cue, since he/she cannot feel the load in the fixed base simulation. The 

downward view also gives the pilot visual cues for the lateral and longitudinal reposition maneuvers 

given the limited view out the forward window. 

 
Figure 6-3. Simulator displays. 
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Due to the limitations of the fixed base environment for simulating slung load configurations, and the 

lack of sideward visual cueing (no side window),  handling qualities ratings would not be valid and were 

not collected. Instead, pilot comments comparing the two cable angle feedback control systems to the 

Baseline, as well as statistical data (pilot stick cutoff frequency) are used to evaluate the relative 

drawbacks and benefits of the cable angle feedback control systems. 

6.3 Piloted Tasks 

The pilots were asked to complete a series of evaluation maneuvers and provide comments for each 

of the three control systems. The flight condition was hover/low speed, 15000lbs aircraft, 5000lbs load, 

and 79ft sling. Pilots first flew the Baseline control system, and then in random order, the two cable angle 

feedback control systems for the tasks given in Table 6-1.  The pilots were not told whether they were in 

the Pilot Handling or Load Damping configuration. Comments were collected after each task in Table 6-1 

for each control system. Pilots were instructed to provide comments comparing and contrasting the 

control systems and the relative ease of each of the tasks.  

Four pilots were used in this study. All four pilots were test pilots, with UH-60 slung load experience. 

Pilots 1, 3, 4 are US Army experimental test pilots. Pilot 2 is a retired NASA test pilot. 

 
Table 6-1. Pilot tasks. 

Task # Task Description 

1 Check out/ Familiarization 
Pilot should become familiar with the response of the 

control system before performing the tasks. 

2 Lateral Reposition 
Fly 6kts laterally across the runway, and return to 

hover at the far end. This uses the downward display to 
provide visual references. 

3 Longitudinal Reposition 
Fly 6kts longitudinally across the runway, and return to 
hover at the far end. This uses the downward display to 

provide visual references. 

4 Hover Boards 
Hover in front of the hover board with and without 

turbulence. 
 

6.4 Piloted Comments 

The pilot comments provide good insight into the relative merits and drawbacks of the three control 

systems. A summary of comments are provided for each control system.  

Baseline FCS 

The pilots generally found the Baseline control system to have a reasonable response with respect to other 

external load configurations they have flown and did not find the responses objectionable:  

“Control responses are reasonable” – Pilot 1 

 “Dynamics are appropriate to task” – Pilot 2 

The lateral reposition task was found to be the most difficult with the external load:  

“Better behaved longitudinally than laterally” – Pilot 2 

“Lateral reposition task is more difficult if not anticipating load motion” – Pilot 3 
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The pilots also found that the load swing tended to cause a velocity response that was not as smooth and 

that the load took a long time to damp out:  

“More difficult to maintain speed when starting maneuver while load is still swinging” – Pilot 3 

“Load takes considerable time to damp, but does not affect workload” – Pilot 1 

“Must accept load oscillations and correct for velocity changes due to load swing” – Pilot 4 

Load Damping FCS 

The pilots immediately noticed that the load damped more quickly:  

“Load motions damp very quickly as compared to Baseline” – Pilot 3 

 “Work load roughly same as Baseline, but load damps more quickly” – Pilot 1 

The tasks were generally considered easier or the same as Baseline, but the pilot must give up some 

control to the attitude control system:  

“Control is not fine grained, but direction and speed of vehicle easier to control” – Pilot 2 

“Overall maneuver is easier to perform than Baseline.  [Periodically] got into load oscillations 

aggravated by the pilot during deceleration and had to back out of the loop” – Pilot 4 

“Longitudinal and lateral repositioning tasks are easier but pilot must give up a lot of control”  

– Pilot 3 

The uncommanded attitudes used to damp the load motions were found to be very unnatural by the 3rd 

pilot:  

“Unnatural response, can get positive roll angle with negative lateral inputs at times” – Pilot 3 

 “Treat the control system like ‘Attitude Suggestion’ as opposed to attitude command” – Pilot 3 

“Must take myself out of the loop, let the aircraft take care of the load” – Pilot 3 

Pilot Handling FCS 

This control system was found to provide a more stable response:  

“More stable velocity response” – Pilot 1 

“Load is more active but a/c is not as driven by the load dynamic, the attitude is more stable even 

though the load is swinging” – Pilot 2 

Pilot 3 found this response to be much more natural than the damping control system:  

“Aircraft is doing the same thing I want to do with the attitude, so more comfortable” – Pilot 3 

“Very natural response” – Pilot 3 

All four pilots felt that tasks were easier to complete using the Pilot Handling FCS as compared to the 

Baseline and Load Damping configurations:  

“Good position hold, vehicle response is smooth” – Pilot 1 

“By far the best performance of the three configurations” – Pilot 2 

“This configuration was the easiest to fly, almost as easy as without an external load” – Pilot 3 
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“Slightly easier to perform tasks than damping configuration, much better than Baseline 

configuration” – Pilot 4 

6.5 Statistics 

The piloted cutoff frequency is a good measure of the bandwidth of the pilot’s inputs and has been 

shown to closely track the pilot cross-over frequency [45]. Thus, the pilot cutoff frequency provides 

insight into the pilot’s control strategy, and determines the fundamental frequency that the pilot used to 

control the helicopter/slung-load system during a task. The pilot cutoff frequency 1 is the half power 

frequency associated with 1 : 

  
1

0

2
1 2

1


 

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




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

 (6.1)  

tot  is the pilot RMS calculated over the entire frequency range. The input autospectrum G  is 

calculated via FFT of the input signal within the CIFER® software [45].   

For external load operations, it has been observed that the pilot cutoff frequency is typically below the 

load mode for larger LMRs (including the LMR of 0.25 used here), indicating that the pilot adopts a 

control strategy to avoid exciting the load motion [2]. This implies that the pilot cannot fly aggressively 

with external loads which have long slings and thus low natural frequencies. This may limit the ability to 

fly some tasks successfully.  

The pilot cutoff frequency for each pilot is shown in Figure 6-4, for the lateral cyclic during the 

lateral reposition maneuver.  Figure 6-5 gives the cutoff frequencies for each pilot’s longitudinal cyclic 

inputs during the longitudinal reposition maneuver. The results for the Load Damping control system 

indicate that all four pilots adopted a lower pilot cutoff frequency than for either the Baseline or Pilot 

Handling control systems in both the lateral (Figure 6-4) and longitudinal axes (Figure 6-5). This would 

indicate a diminished capability to achieve the same aggressiveness as the other two designs, which is 

consistent with the pilot comments indicating this configuration is not preferred. The Pilot Handling FCS 

had a consistently higher piloted cutoff frequency in both axes than the other control systems. In the 

longitudinal axis, the cut-off frequencies are in general much lower than in the lateral axis. However, the 

cutoff frequencies for the three control systems in the longitudinal axis still follow the same trend as the 

lateral axis. These results indicate that the Pilot Handling control system allows the pilots to be more 

aggressive even in the presence of the load motion. This is consistent with the pilot comments indicating 

that this was the preferred configuration.  
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Figure 6-4. Lateral pilot cutoff frequencies. 
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6.6 Discussion of Piloted Simulation Results 

The results of the analytical and pilot simulation results are consistent with a trade-off between 

handling qualities and load damping for cable angle/rate feedback control laws. The piloted comments 

shows a preference for a cable angle feedback configuration that reduces the depth of the notch associated 

with the aircraft attitude attenuation at the load mode (MAG) over the Baseline and Load Damping 

configurations. However, for precision load placement, there are clearly operational advantages to being 

able to quickly damp load motions automatically, despite the cost paid in maneuvering handling qualities. 

As an example of the benefits of the Load Damping configuration, Figure 6-6 shows the lateral reposition 

maneuver from the fixed based piloted simulation (Pilot #3). In the first 30 seconds of the record, the pilot 

accelerates to ~10kts, translates across the runway, and decelerates to hover. In the recovery phase, which 

starts at about 30 seconds for all three cases, the pilot is attempting to hold a stable hover. The Load 

Damping case has no load swing nearly immediately after hover is achieved. The other two control laws 

still have significant load swing when the record ends. The Load Damping control laws would clearly be 

useful if the load was being delivered to a precise target location, where for the 79ft sling used herein 

even a seemingly small five degrees of load swing (in a steady hover) causes 7ft of load translation along 

the ground. 
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Figure 6-6. Lateral cable angle during lateral reposition maneuver in fixed based simulator. 
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There are two solutions to this fundamental tradeoff. The first is to choose a compromise design 

which is somewhere between the Pilot Handling and Load Damping control systems, but is not optimal 

for pilot handling or load damping. The second solution is to switch between the control laws in a task 

tailored strategy. This could be either a pilot selectable or an automatic Load Damping switch near hover 

but would default to the Pilot Handling control laws during maneuvering. This task tailored method 

would ensure that the control laws are optimal for the task, but comes at the cost of added complexity due 

to gain scheduling considerations.  The task tailored approach is taken herein because the added software 

complexity is warranted given the improvements that can be achieved in maneuvering and load placement 

by implementing this method. 

6.7 Summary of Chapter 6 

Chapter 6 describes the fixed based piloted simulation of the three control system designs from 

Chapter 5 – Baseline (fuselage feedback only), Piloted Handling (fuselage and cable angle/rate feedback), 

and Load Damping (fuselage and cable angle/rate feedback) configurations. The key contributions of 

Chapter 6 include: 

1. Validation of key trade-offs between load damping and pilot handling for cable angle/rate 

feedback control systems in the pilots’ comments.  

2. Quantitative results for pilot cut-off frequency are consistent with pilot comments indicating 

preference for the Pilot Handling control laws.  

3. A task-tailored control law is suggested as a solution to the handling-qualities/load-damping 

trade-off for a cable angle/rate feedback control system.  
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7 Task Tailored Cable Angle/Rate Feedback Control Law Design and 

Analysis 

In the previous chapters, a fundamental trade-off was identified between load damping and piloted 

handling qualities for feedback control systems with cable angle/rate feedback. This chapter develops a 

new task-tailored approach that uses a method of switching between a load damping mode and a piloted 

handling qualities mode based on the flight regime.  This task-tailored control law is designed to be an 

integrated part of an advanced control system that builds on the attitude command architecture of Chapter 

5 to add response types with higher levels of augmentation. These response types are implemented as 

‘outer-loop’ velocity and position modes that pass attitude commands to the ‘inner-loop’ attitude 

command system.  Due to a change of configuration from a 79ft sling in Chapter 5 to a 56ft sling in this 

chapter for safety of flight reasons and the requirement to maintain stability margins in the presence of the 

‘outer-loop’ modes, the attitude command feedback gains are re-optimized in this chapter (as opposed to 

directly using the values from Chapter 5).  This re-optimization uses the same design methods as in 

Chapter 5 to obtain ‘Load Damping’, ‘Pilot Handling’, and ‘Baseline’ control systems that are optimal for 

the new architecture and configuration used here in Chapter 7. Also, the velocity, position, and altitude 

feedback gains that implement the higher levels of augmentation are optimized. 

7.1 Task Tailored Control Law Approach 

ADS-33E-PRF [21] provides guidance on the required response types for Level 1 handling qualities, 

with more augmentation required as the usable visual cue environment [21] degrades (e.g. night). It is 

well known that the visual environment for hover/low speed tasks degrades with slung load operations 

because the pilot is higher from the ground (to avoid dragging the load), so cues are less available [2]. 

The response-types required for degraded visual cue environments are attitude command, translational 

rate command, position hold, yaw rate command with heading hold, and altitude hold. Furthermore, 

higher levels of augmentation generally improve the handling qualities of the aircraft [35], which should 

translate to improved handling qualities with an external load. The attitude command system studied in 

Chapters 5-6 did not include all the response types required, and instead focused on the pilot response 

trade-offs. Herein the attitude command architecture of Chapter 5 is built upon to include all the response 

types required for an advanced control system that can provide Level 1 handling qualities in the degraded 

visual environment.  

The approach taken here to integrate all these response types into a single comprehensive control law 

is similar to that of the UH-60MU [35], where the mode of operation is based on ground-speed and pilot 

inceptor position. This type of control scheme is referred to as an “advanced” control law architecture, 

due to the complexity of the various control law modes of such a system, especially as compared to 

legacy civilian and military helicopters which feature only a simple rate feedback partial authority 
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stability augmentation system.  In the case of the UH-60MU, the advanced control law architecture 

provided Level 1 handling qualities for an unloaded aircraft in the degraded visual environment [35]. The 

task-tailored control approach for cable angle/rate feedback is integrated into the moding architecture of 

the advanced control laws developed herein.  

The task tailored design was developed to optimize the aircraft/load response characteristics as a 

function of the control task and aircraft state.  To implement the task-tailored strategy, the Pilot Handling 

control laws are used when the pilot is in the loop (moving the controllers) to ensure that good handling 

qualities characteristics are active for  maneuvering flight. Load Damping control laws are implemented 

only in the position hold and automatic deceleration modes because the pilot is not in the loop during 

these automated modes (and therefore response to pilot stick is not important). Also, the aircraft is at low 

speed in position hold/automatic deceleration, where the load motion is most important since the load is 

most likely to be placed on the ground from this flight condition. 

7.2 Task Tailored Modes of Operation 

The moding architecture that was developed to implement the task-tailored control strategy into an 

advanced control law architecture is shown in Figure 7-1 and Figure 7-2, as a function of lateral and 

longitudinal ground speed ( xV and yV ). The functionality is also dependent on the cyclic ‘out of detent’ 

and ‘in detent’, as shown by the left and right sides of the figures, respectively. The ‘detent’ of the cyclic 

is the center position. The maximum ground speed for this control law is 40kts because this study focuses 

on hover/low speed characteristics. The fuselage-based modes of the control system are shown in Figure 

7-1, and the task-tailored cable angle/rate feedbacks are integrated into these control modes as shown in 

Figure 7-2. 
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Figure 7-1.  Fuselage-based control modes.  

 

 

 

Figure 7-2. Task-tailored cable angle/rate feedback functionality.  
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The attitude command response type is used when the cyclic stick is ‘out of detent’, for all airspeeds 

from 0-40kts as shown on the left hand side of Figure 7-1. When the stick is ‘in detent’, the position hold, 

automatic deceleration, and velocity hold modes are applied depending upon the ground speed, as shown 

on the right hand side of  Figure 7-1. For example, if the speed is above 5kts when the stick is placed into 

detent, the system will capture the current velocity, and maintain that velocity until the stick is removed 

from the detent position. Alternately, if the speed is less than 5kts when the stick is placed into the detent 

position, the aircraft will automatically decelerate to hover and once the ground speed is below 0.5kts the 

system will transition into position hold, capturing and maintaining position. The system switches back to 

attitude command immediately if the stick is moved out of the detent position during the velocity hold, 

automatic deceleration or position hold.  

The task-tailored strategy for cable angle/rate feedback is integrated into the fuselage-based modes of 

operation as shown in Figure 7-2. In general, the strategy was to use Pilot Handling control laws when the 

pilot is in-the-loop and the Load Damping control laws when the pilot is not in-the-loop to minimize the 

undesirable effects of Load Damping on the perceived handling qualities.  The Pilot Handling (cable 

angle feedback) control laws are active during maneuvering when the stick is ‘out of detent’ and the 

aircraft is in attitude command mode, as shown on the left side of Figure 7-2. The Pilot Handling control 

law was the preferred configuration for attitude command in the piloted simulation study of Chapter 6, 

and therefore is used for attitude command mode in this task-tailored strategy.  This ensures the pilot has 

good handling qualities characteristics for maneuvering. The system switches to the Load Damping (cable 

angle/rate feedback) control laws during the deceleration and position hold modes, as shown on the right 

side of Figure 7-2.  Thus, Load Damping control is used only when the stick is ‘in detent’. This strategy 

ensures that Load Damping is only active near hover where it is most useful for load placement and that it 

is not used during pilot maneuvering.  This is important to ensure that good handling qualities can be 

achieved for the overall system, considering that the piloted simulator comments were unfavorable toward 

the Load Damping control laws for maneuvering in Chapter 6. The Pilot Handling cable angle feedback is 

also used during the velocity hold mode, as shown on the right side of Figure 7-2, because this strategy 

provides a tighter velocity hold than the Load Damping system, and Load Damping is not needed when 

the aircraft is away from hover. Descriptions of all the modes are provided in Table 7-1. 
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Table 7-1. Description of control law modes. 

Mode 
Control 

Laws 
Description 

Attitude Command (AC) CAF, OBL 
Most basic mode of operation. Attitude of aircraft is 
proportional to pilot stick (stick out of detent).  

Velocity Hold (VH) CAF, OBL 
Control system will hold the current ground velocity when 
the stick is in detent. 

Automatic Decel CAF, OBL 
When ground speed is <5kts the aircraft will automatically 
decelerate to a hover if the stick is in detent. When speed 
is <0.5kts, system automatically captures position (PH).  

Position Hold (PH) CAF, OBL 

Aircraft will hold position if aircraft speed is 
 < 0.5 knots and stick is in detent. Position beepers:             
Short beep = +/-1ft                                                                   
Long beep = translation at +/-2kts 

Altitude Hold (ALTHLD) CAF, OBL 

Aircraft will automatically hold altitude when collective is 
in the detent position. Altitude beeper:                                    
Short beep = +/-1ft                                                                   
Long beep = +/-90 ft/min 

Rate Command, Heading Hold (RCHH) CAF, OBL 
Pedal will command yaw rate, and hold heading when 
pedal is in centered position.   

Pilot Handling Load Feedback Mode CAF only 
Occurs when stick is out of detent position (pilot is 
maneuvering the aircraft).  

Load Damping Load Feedback Mode CAF only 
Occurs during Automatic Decel and Position Hold when 
stick is in detent (pilot is not in the loop).  

 
As described in Table 7-1, various ‘beeper’ modes are incorporated into the design. Position hold and 

altitude hold feature ‘beeper’ modes which provide additional functionalities that have been tailored to 

slung load operations. The position hold beeper allows the pilot to use a small ‘joystick-like’ beeper 

button that is on the cyclic to nudge the aircraft 1ft forward, aft, right, or left with a short click of this 

button. Multiple, consecutive short clicks of the beeper will command the aircraft to move the appropriate 

distance from the current position hold location (e.g. 5 clicks = 5ft), and hold the new position. The Load 

Damping mode stays on during beeper repositioning, ensuring that the load does not begin swinging. 

Additionally, by holding the beeper down (long beep) in a given direction, this commands a translational 

rate of 2kts in that direction. The beeper functionality was developed for making small adjustments to the 

position of the aircraft (and therefore the load) for precisely positioning a load before set-down.  The 

collective beeper works similarly, with a button on the collective that moves up and down (with a thumb 

nudge). By giving a short click ‘up’ the aircraft will move up 1ft when in altitude hold mode (and 

multiple clicks moves aircraft multiple feet up). There is a similar functionality for downward beeps. 

Additionally, by holding the beeper up or down (a long beep), the aircraft will climb or descend at a rate 

of 90ft/min, which has been tuned for a reasonable load set-down speed. The collective beeper 

functionality was developed for controlled set-down of the load in the vertical axis.   

As an example of how the task-tailored control law scheme of Figure 7-2 might be used, consider a 

precision load placement task, where the pilot must maneuver to the load set-down area, and quickly 
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deliver the load to a precise location. First, the task-tailored cable angle/rate feedback allows the pilot to 

maneuver with good handling qualities to the load set-down location in the Pilot Handling attitude 

command mode. Once near the load set-down location, the pilot hovers (or uses the automatic 

deceleration mode) at which time position hold is enabled and also automatic Load Damping control 

occurs. By using the position beeper and collective, the pilot can put down the load in the desired 

location, while staying in the Load Damping mode. If at any time the pilot wants to maneuver the 

helicopter, the control system automatically switches to the Pilot Handling cable angle/rate gains when 

the stick leaves the detent (center) position. The Load Damping mode returns when position hold or 

automatic deceleration is re-enabled (stick in detent and speed <5kts). Thus, the task tailored control law 

combines both the Load Damping and Pilot Handling control laws into a multi-mode control law 

architecture and will be henceforth be referred to as the Cable Angle/rate Feedback (CAF) control law.   

An Optimized Baseline system with fuselage feedback only is described in Table 7-1. The Optimized 

Baseline was developed with the same command and hold modes in Figure 7-1, but does not use the load 

specific modes in Figure 7-2. The Optimized Baseline system does not switch gains in a task-tailored way 

because there are no cable feedbacks. This system provides a well designed and fair basis for comparison 

with the CAF system, since it has the same architecture (without cable feedback) and was designed 

against the same specifications. This control law extends the Baseline attitude command system described 

in Chapter 5 to include velocity and position hold modes, and optimizes the fuselage gains for this 

configuration. This control law is referred to as the Optimized BaseLine control law (OBL). 

7.3 Task Tailored Control Law Architecture 

The task-tailored control laws with modes shown in Figure 7-2 were implemented with architecture 

shown in Figure 7-3 for the lateral and longitudinal axes. The basic attitude command control system is an 

explicit model following control law [36], same as the system shown in Figure 5-2 and Figure 5-3. 

Attitude command is used when the stick is out of the detent (center) position. The load cable angle and 

rate feedback loops are also included the longitudinal and lateral axes (same as Figure 5-2 and Figure 

5-3). The load feedback is inertial ( c , c ) as opposed to relative to the aircraft to provide faster load 

damping (it is desired to damp the load in the inertial frame, not in the relative frame). The velocity and 

position hold modes were added to this basic attitude command architecture from Chapter 5. These 

advanced control modes are implemented with nested velocity and position feedbacks as shown in Figure 

7-3. 

 Figure 7-4 shows the vertical axis, which has the basic vertical velocity command developed in 

Chapter 5 (Figure 5-5) with an added altitude hold.  The altitude hold comes on when the vertical velocity 

is less than 30 ft/min, and the collective is in the detent position. The yaw axis, which is rate command 

with heading hold, is identical to Figure 5-4. Load feedback is not active in the vertical or directional 

axes. 
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Figure 7-3. Control system architecture – lateral and longitudinal.  
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Figure 7-4. Control system architecture – vertical axis.  
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7.4 Control Law Optimization 

Two control laws were designed using the multi-objective optimization technique for determining 

feedback gains:  

1. Cable Angle/Rate Feedback (CAF) – task-tailored control laws that switch between Load 

Damping and Pilot Handling load feedback methods and makes use of fuselage, cable angle and 

cable rate feedbacks.  The Load Damping and Pilot Handling attitude command gains are not 

used directly from Chapter 5, but instead are re-optimized here (in Sec. 7.4.2)  to account for a 

change of sling length (described in  Sec. 7.4.1) and to maintain stability in the presence of outer-

loop velocity and position modes (shown in Figure 7-3 and Figure 7-4).  The CAF control system 

is described in Table 7-1 and Figure 7-2.   

2. Optimized Baseline (OBL) – uses fuselage feedback only, with the load feedback gains set to 

zero. This advanced control system is built on the Baseline architecture of Chapter 5, but the 

attitude command gains are slightly different than Chapter 5 because the feedback gains are re-

optimized (as described later in Sec. 7.4.2). Similarly to the CAF control laws, OBL was re-

optimized to account for a change in sling length (described in Sec. 7.4.1) and to maintain 

stability with the outer-loop velocity and position modes (shown in Figure 7-3 and Figure 7-4). 

This control system is described in Table 7-1 and Figure 7-1.   

The multi-objective optimization technique is described in detail in Chapter 5 and Ref. 49.  Due to the 

complicated nature of this problem with many modes, design specifications, in addition to gain 

scheduling and multiple configurations (e.g. different load masses) that must meet the requirements, this 

is a difficult control problem to tune by hand. Multi-objective optimization is useful to tune the gains to 

meet all the requirements using direct optimization techniques. The software used for the multi-objective 

optimization herein is CONDUIT® [56]. 

7.4.1 Aircraft and Load Configuration 

The task-tailored control laws are optimized for the 56ft sling with 5000lb load, on a 15,000lb UH-60. 

The configuration was changed from the 79ft sling in Chapters 5-6 to a 56ft sling in order to 

accommodate safer flight testing. Additionally, the 56ft sling has poor handling qualities with a heavy 

load for maneuvering [2] and has poor handling qualities with a light load (1000lb) for load placement. 

The 79ft sling has slightly worse baseline handling qualities than the 56ft configuration, but otherwise the 

configurations display very similar characteristics and trade-offs.  

7.4.2 Design Specifications 

The goal for the CAF optimization is to ensure both modes (Load Damping and Pilot Handling) meet 

the stability and gust rejection requirements. In addition, the Pilot Handling mode must meet the Level 1 

handling qualities requirements and the Load Damping mode must meet a load damping ratio greater than 

0.2. The results from Chapter 5 are not used directly as the attitude loop gains herein because of the new 
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configuration (56ft sling), the desire to meet stability margins for VH and PH (without gain scheduling 

attitude and rate gains), and the desire to gain schedule as few gains as possible when transitioning in and 

out of the Load Damping mode. However, the overall strategy from Chapter 5 was used to optimize the 

Load Damping and Pilot Handling modes for the current configuration and constraints. For the OBL 

configuration, the goal was to optimize one gain set to obtain the best possible performance relative to the 

CAF design, but without load feedback. This gives a level field for comparison against which to 

determine the benefits of the cable angle/rate feedback task-tailored control law. Similarly to CAF, the 

OBL gains from Chapter 5 were not used for the attitude loop gains, but were instead re-optimized for the 

56ft sling, and to maintain stability margins with velocity and position feedbacks.  

The control law design was focused on one sling length (56ft) and load mass (5K), but was also 

required to meet stability margins for multiple load masses. The 56ft sling with a 5000lb load was chosen 

as the key design case because it represents the critical configuration (longest sling, heaviest load) that 

would be flown. The control laws were also required to meet stability margins for the unloaded 

configuration, which becomes relevant upon load set-down. The control laws also must revert to a system 

with acceptable margins if the cable angle sensors fail or are disconnected.  

The control system was designed to meet the requirements for ADS-33E-PRF Level 1 handling 

qualities [21], stability margins [53], disturbance rejection [54], and handling qualities with an external 

load (described in Chapter 3). The design specifications of Table 7-2 were implemented in the multi-

objective optimization to ensure that the control system would have the desired flying qualities. This set 

of specifications in Table 7-2 is a super-set of those given in Chapter 5, with the same specifications used 

to optimize the attitude command mode from Table 5-3, but with additional requirements for velocity and 

position hold modes.  

A sequential optimization strategy, as described herein, was adopted in order to minimize the number 

of gain scheduled parameters needed to implement the task-tailored CAF control laws. The attitude 

command gains (including fuselage angular rate, attitude, and attitude integral gains, as well as cable 

angle and cable rate gains) for the Pilot Handling control mode were first optimized against the 

specifications.  Then, a separate optimization was performed to optimize the attitude command gains for 

the Load Damping control laws, with some of the gains fixed to the Pilot Handling values, and the limited 

set of parameters 
ccc

KKKKKKK qpqp  ,,,,,, available to optimize, such that the requirements of  

Table 7-2 including increased load damping ratio were met. This set of parameters 

(
ccc

KKKKKKK qpqp  ,,,,,, ) must be gain scheduled as the CAF system switches between Load 

Damping and Pilot Handling modes.  

The outer loop modes were then optimized once the attitude command gains for both CAF modes 

were determined.  Pilot Handling mode attitude and cable gains (vs. Load Damping gains) were used in 
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velocity hold because they provide a tighter velocity loop than the Load Damping gains.  Thus, the Pilot 

Handling attitude command gain set was fixed for the optimization of the velocity hold gains. Then, 

during the optimization of the position hold mode, the position feedback gains were optimized with the 

Load Damping attitude command gains and the velocity hold gains fixed to the previously optimized 

values.  

For the Optimized Baseline control system, the attitude command system was optimized and then the 

velocity hold and position hold gains were optimized around the fixed attitude command gains. This 

sequential optimization strategy for OBL eliminates the need for gain scheduled parameters, unlike the 

CAF control laws which need gain scheduling to handle the task tailored Load Damping and Pilot 

Handling switch in functionality.   The ‘outer loop’ velocity and position gains for OBL are optimized to 

meet the requirements with the previously optimized ‘inner loop’ attitude gains. Therefore, the inner loop 

attitude gains do not need to be gain scheduled with each sequential loop closure.  Slightly better 

performance might be obtained by gain scheduling all parameters with the addition of each outer loop 

closure, but adds unnecessary complexity for the OBL control laws because all requirements are met with 

the sequential strategy. 
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Table 7-2. Control system design specifications. 

Specification 
(CONDUIT® 
Mnemonic) 

Description 
Constraint 

Type 
Axes 

Modes 
(defined in Table 

7-1) 

EigLcG1 Eigenvalues in left-half plane [1] Hard 
Pitch, Roll, 
Yaw, Heave 

AC, VH, PH, 
ALTHLD, RCHH 

StbMgG1 Gain and phase margin [53] Hard 
Pitch, Roll, 
Yaw, Heave 

AC, VH, PH, 
ALTHLD, RCHH 

BnwPiH1 
Pitch bandwidth for acquisition and tracking, 
Attitude Command Requirements [21] 

Soft Pitch AC 

BnwRoH2 
Roll bandwidth for other M.T.E.’s, attitude 
command requirements [21] 

Soft Roll AC 

BnwYaH1 Yaw bandwidth for acquisition and tracking [21] Soft Yaw RCHH 

BnwPiS1 
Pitch external load handling qualities criteria [2]. 
Level 1 required for Pilot Handling CAF mode and 
OBL  

Soft  Pitch AC 

BwnRoS1 
Roll external load handling qualities criteria [2]. 
Level 1 required for Pilot Handling CAF mode and 
OBL                                           

Soft 
Roll 
 

AC 

CouPRH2 Coupling between pitch and roll [21] Soft Pitch/Roll AC 

CouYaH2 Coupling between collective and yaw [21] Soft Yaw RCHH 

DmpTmG1 

Damping ratio of Load from log decrement method 
08.0  - AC, VH, PH for OBL 

1.0 - AC, VH for CAF (Pilot Handling mode) 

2.0  - PH for CAF  (Load Damping mode) 

Soft Pitch, Roll AC, VH, PH 

DstBwG1 Disturbance rejection bandwidth [54] Soft 
Pitch, Roll, 
Yaw, Heave 

AC, VH, PH, 
ALTHLD, RCHH 

DstPkG1 Disturbance rejection peak magnitude [49] Soft 
Pitch, Roll, 
Yaw, Heave 

AC, VH, PH, 
ALTHLD, RCHH 

EigDpG1 Damping ratio requirements [21] Soft 
Pitch, Roll, 
Yaw, Heave 

AC, VH, PH, 
ALTHLD, RCHH 

FrqHeH1 Heave response bandwidth [21] Soft Heave AC, ALTHLD 

HldNmH1 
Normalized attitude hold response to disturbances 
[21] 

Soft 
Pitch, Roll, 
Yaw 

AC, RCHH 

ModFoG2 
Performance of Aircraft as compared to command 
model  [36] 

Soft 
Pitch, Roll, 
Yaw, Heave 

AC, RCHH 

OlpOpG1 
Open loop onset point specification for actuator 
rate limiting [55]  

Soft 
Pitch, Roll, 
Yaw, Heave 

AC, VH, PH, 
ALTHLD, RCHH 

TrkErG1 RMS of load response in turbulence Soft Pitch, Roll 
AC, VH, PH, 
ALTHLD 

CrsLnG1 Minimizes cross-over frequency [49] 
Summed 
Objective 

Pitch, Roll, 
Yaw, Heave 

AC, VH, PH, 
ALTHLD, RCHH 

RmsAcG1 Minimizes actuator RMS [49] 
Summed 
Objective 

Pitch, Roll, 
Yaw, Heave 

AC, VH, PH, 
ALTHLD, RCHH 
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7.4.3 Control Law Optimization Results 

Key attitude command characteristics for the optimized designs are shown for the 5000lb load, with a 

56ft sling in Table 7-3 and Table 7-4. The tables show that the CAF control laws (in Pilot Handling mode 

for attitude command) have much improved stability margins and attitude disturbance rejection, in 

addition to slightly improved load damping as compared to OBL. Figure 7-5 shows that the CAF control 

laws in attitude command (Pilot Handling mode of task-tailored control law) have less magnitude 

distortion near the load mode than OBL, moving the predicted handling qualities deeper into the desired 

HQR<4 region for the stick-out of detent piloted response. These results are consistent with those in the 

attitude command optimization for the 79ft sling, in Table 5-4 and Table 5-5.   

The improvements in the stability margins for CAF with respect to OBL are mainly due to changes in 

the broken-loop shape around the load mode as seen in Figure 7-6, which compares the broken loop 

responses of the two configurations. The figure shows that subtle changes near the load mode due to cable 

angle/rate feedback shift the cross-over frequency higher, where more phase margin is available.  This 

improvement is more easily seen by plotting the broken loop response as a Nichols chart, in Figure 7-7. 

The arrow indicates considerably improved robustness of CAF as compared to OBL near the load mode 

because the response is much further from the exclusion zone. CAF also provides a modestly better 

robustness at higher frequency, as shown by increased distance from the exclusion zone on the lower right 

side of the diamond in Figure 7-7. Note that the diamond shaped exclusion zone is based on 35 degrees of 

phase margin and 6dB of gain margin.  It is worth mentioning that cable feedback provides loop shaping 

at the frequency of the load mode and as such, it is robust to a variety of sling lengths and load masses as 

shown in Sec. 5.4.3. This is a large benefit over an inverse notch type compensator which could provide 

the same improvements in loop shape for one configuration, but would have to be scheduled with sling 

length and load mass to operate robustly.  

Figure 7-6 shows that the OBL design has a crossing at ~0.8 rad/s, which is associated with low phase 

margin. The phase margin is 34.9 deg in this configuration, and cannot be increased within the constraints 

of the optimization. This manifests as a brief excursion into the exclusion zone of the Nichols chart in 

Figure 7-7 (near the start of the arrow).  The CAF configuration changes the loop shape in order to have a 

low frequency crossing at 1 rad/s, and the highest cross-over at 4.69 rad/s is somewhat reduced from the 

OBL design, which is beneficial because it excites less high frequency actuator activity.  

Another key improvement with the cable angle feedback in attitude command is the roll angle 

disturbance rejection bandwidth. The disturbance rejection bandwidth (DRB) improves considerably from 

.71 rad/s in OBL configuration to 2.24 rad/s in the CAF configuration, which indicates that attitude 

disturbances will be rejected much more quickly for the CAF configuration. This is due to attenuation of 

disturbances near the load mode with CAF, which is shown in Figure 7-8  in the circled area of the plot. 
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This causes the disturbance response to cross the -3dB line at a higher frequency, increasing the 

disturbance rejection bandwidth. 

 
Table 7-3.  Attitude command control law characteristics for lateral axis (5K, 56ft sling). 

Lateral 

 
GM 
[dB] 

PM 
[deg] 

XOVER 
(at actuator) 

[rad/s] 

Phi - DRB 
[rad/s] 

Load 
Damping 

Ratio 

OBL 5.89 34.90 5.41 0.71 0.08 
CAF 

Pilot Handling Mode 
6.78 47.55 4.69 2.24 0.14 

 
Table 7-4.  Attitude command control law characteristics for longitudinal axis (5K, 56ft sling). 

Longitudinal 

 
GM 
[dB] 

PM 
[deg] 

XOVER 
(at actuator) 

[rad/s] 

Theta - DRB 
[rad/s] 

Load 
Damping 

Ratio 

OBL 11.95 40.03 2.84 0.63 0.08 
CAF 

Pilot Handling Mode 
10.48 45.84 3.19 0.72 0.11 
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Figure 7-5. Handling qualities specification, attitude command mode (5K, 56ft sling).  
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Figure 7-6. Lateral broken loop response, attitude command mode (5K, 56ft sling). 
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Figure 7-7. Nichols Chart for lateral broken loop response, attitude command mode (5K, 56ft).  
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Figure 7-8. Roll attitude disturbance response ( gust ), attitude command mode (5K, 56ft sling). 

 
The velocity and position hold characteristics of the optimized control systems are shown in Table 

7-5 and Table 7-6. The stability margins shown in the tables are calculated with the loop broken at the 

actuator. The CAF system has better stability margins and greatly improved load damping, as well as 

similar velocity and position disturbance rejection bandwidth (DRB) characteristics to the OBL design. 

Recall that the longitudinal and lateral cable angles and rates, as well as pitch and roll attitude gains are 

scheduled with the Load Damping mode, which is active in position hold to provide a much improved 

load damping response.   

The disturbance rejection bandwidth result in, for example, lateral position (Y) is defined as response 

to a disturbance in the lateral position feedback. This response is at low frequency (i.e. DRB~0.3), much 

lower than the load mode at ~1.0 rad/s, and thus the effect of load interaction is not present in these 

metrics. However, in the time responses, there is a trade-off with position hold performance and load 

damping for higher frequency disturbances that cause the load to swing, as shown for a pulse disturbance 

to roll attitude in Figure 7-9 - Figure 7-11. In this case, the OBL design does better at controlling the 

aircraft position, as shown in Figure 7-9, even though the CAF control laws have essentially the same 

position disturbance rejection bandwidth as the OBL design. However, the CAF design does much better 

at controlling the load motion, as shown in Figure 7-10. This relates to the key trade-off of cable 

angle/rate feedback to the rotor; that the system cannot control the aircraft and load motions 
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independently. This principle is further illustrated by Figure 7-11, which shows that the aircraft must 

actively position itself over the load to damp the load motions. In Figure 7-11a, the OBL aircraft position 

is out of phase with the load response, whereas for the CAF control system in Figure 7-11b the aircraft 

follows the load position, effectively damping the load at the cost of greater fuselage position variance.  

The directional and vertical controller characteristics are given in Table 7-7. These axes do not have 

cable angle feedback so the designs are very similar for CAF and OBL. Also, the characteristics are 

nearly identical for Load Damping and Handling Qualities modes of CAF in the directional and vertical 

axes.  

The optimized feedback gains are given in Table 7-8 - Table 7-11. Similarly to Chapter 5, the cable 

angle gains are used for the Pilot Handling CAF mode, whereas cable rate and cable angle feedback are 

needed for the Load Damping CAF mode. This is another reason that the two modes cannot occur 

simultaneously; in order to damp the load cable rate feedback is required, but it causes distortion in the 

attitude response of the aircraft. This is consistent with the coupling numerator results of Chapter 4, seen 

in Figure 4-8. 

 
Table 7-5. Position and velocity control law characteristics for lateral axis (5K, 56ft sling). 

Lateral - in position hold 

 
GM 
[dB] 

PM 
[deg] 

XOVER 
(at actuator) 

[rad/s] 

v - DRB 
[rad/s] 

Y - DRB 
[rad/s] 

Load Damping 
Ratio 

OBL 5.95 33.42 5.15 1.01 0.29 0.14 

CAF 
Load Damping Mode 

7.47 42.50 4.19 1.22 0.27 0.23 

 

Table 7-6. Position and velocity control law characteristics for longitudinal axis (5K, 56ft sling). 

Longitudinal - in position hold 

 
GM 
[dB] 

PM 
[deg] 

XOVER 
(at actuator) 

[rad/s] 

u - DRB 
[rad/s] 

X - DRB 
[rad/s] 

Load Damping 
Ratio 

OBL 8.08 47.86 2.80 1.04 0.22 0.17 

CAF 
Load Damping Mode 

9.12 46.50 2.34 1.12 0.21 0.25 

 

Table 7-7. Directional and pedal control law characteristics (5K, 56ft sling). 

Pedal - yaw rate command/heading hold Collective - in Altitude Hold 

 
GM 
[dB] 

PM 
[deg] 

XOVER      
(at actuator) 

[rad/s] 

Psi - 
DRB  

[rad/s] 

GM 
[dB] 

PM 
[deg] 

XOVER 
[rad/s] 

w - 
DRB 

[rad/s] 

H - 
DRB 

[rad/s] 

OBL 11.09 60.79 3.67 0.73 16.84 46.22 1.27 0.98 0.52 

CAF 
(Both Modes) 

11.09 60.69 3.68 0.76 13.77 47.71 1.66 1.26 0.68 
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Figure 7-9. Lateral position response in position hold (PH) to 5 deg roll attitude pulse (5K, 56ft). 
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Figure 7-10. Load response in position hold (PH) to 5 deg roll attitude pulse (5K, 56ft). 
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(b) CAF 

Figure 7-11. Aircraft and load inertial position responses in position hold (Load Damping mode) to a pulse 
disturbance (5K, 56ft sling). 
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Table 7-8. Optimized roll axis fuselage gains. 

Roll Axis Fuselage Gains 

pK  

(in-s/rad) 
K  

(in/rad) 
i

K  

(in/rad-s) 
vK  

(rad-s/ft) 
ivK  

(rad/ft) 
YK  

(ft/s/ft) 

OBL 1.86 14.40 0.10 0.019 0.13 0.39 

CAF - Load Damping Mode 1.46 12.22 0.10 0.019 0.13 0.37 

CAF - Pilot Handling Mode 1.40 13.44 0.10 0.019 0.13 n/a 
 

Table 7-9. Optimized pitch axis fuselage gains. 

 Pitch Axis Fuselage Gains 

 qK  

(in-s/rad) 
K  

(in/rad) 
i

K  

(in/rad-s) 
uK  

(rad-s/ft) 
iuK  

(rad/ft) 
XK  

(ft/s/ft) 

OBL 5.81 8.84 0.30 0.015 0.062 0.34 

CAF - Load Damping Mode 5.17 7.83 0.50 0.012 0.062 0.34 

CAF - Pilot Handling Mode 7.06 9.77 0.50 0.012 0.062 n/a 

 
Table 7-10. Optimized cable angle and cable rate feedback gains.  

Roll Axis Cable Gains Pitch Axis Cable Gains 

 
cpK  

(in-s/rad) 
c

K  

(in/rad) 
cqK  

(in-s/rad) 
c

K  

(in/rad) 
OBL 0 0 0 0 

CAF - Load Damping Mode 0.81 3.98 0.60 1.24 

CAF - Pilot Handling Mode 0.0001 3.98 0.0001 2.02 

 
Table 7-11. Optimized yaw and heave axis fuselage gains. 

Yaw Axis Fuselage Gains Heave Axis Fuselage Gains 

 
rK  

(in-s/rad) 
K  

(in/rad) 
i

K  

(in/rad-s) 
wK  

(in-s/ft) 
iwK  

(in-s/ft) 
HK  

(ft/s/ft) 

OBL 6.48 8.99 0.5 0.22 0.125 0.83 

CAF - Load Damping Mode 6.49 9.00 0.5 0.31 0.125 1.03 

CAF – Pilot Handling Mode 6.49 9.00 0.5 0.31 0.125 1.03 
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7.5 Summary of Chapter 7 

A novel task-tailored technique is developed to switch between the Pilot Handling and Load Damping 

methods for CAF (cable angle/rate feedback with fuselage feedback).  The task-tailored technique is 

developed as an integrated part of an advanced feedback control law that includes additional modes of 

augmentation such as altitude hold, velocity hold, automatic deceleration to hover, and position hold. An 

Optimized Baseline (OBL) control system was developed with fuselage feedback only with the advanced 

modes, to represent a modern control system without cable angle/rate feedback for comparison with the 

CAF control laws. The key contributions of this chapter are: 

1. Development of a task-tailored control architecture optimized for maneuvering handling qualities 

when the pilot is moving the cyclic stick, and optimized for load placement in automated modes 

near hover (position hold).  

2. The CAF control system provides improved stability margins in both Load Damping and Pilot 

Handling modes, as compared to OBL.  

3. The CAF control system improves load damping by positioning the aircraft over slung load, 

which trades-off degraded position hold performance with load damping in the Load Damping 

mode. 
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8 Implementation for Flight Test 

The preceding chapters of this dissertation described linear, analytical results of cable angle/rate 

feedback. In order to successfully integrate and flight test these cable angle/rate feedback control laws on 

the RASCAL fly-by-wire Black Hawk helicopter (described in Sec. 2.1), several engineering challenges 

had to be overcome. These challenges included:  

1. Design, installation and integration of a cable angle/rate sensor 

2. Development of equations to convert on-load sensor measurements into cable angles   

3. Removal of load-sling interaction modes from the measured load motion  

4. Elimination of vertical load bounce mode effects from the vertical motion measurements 

5. Designing an effective filter for the aircraft radar altimeter 

8.1 Cable Angle/Rate Sensor 

The US Army Aeroflightdynamics Directorate researchers had previously employed an Embedded 

GPS/INS (EGI) in slung loads to measure inertial load motions and to calculate cable angles in post flight 

analysis. The high quality and reliability of the EGI data motivated the use of these sensors to calculate 

real-time cable angles for use by the CAF control laws. This led to the requirement to integrate the EGI in 

the load with the MIL-STD-1553b [58] data bus on RASCAL so that it could communicate with the flight 

control computer.  A wired MIL-STD-1553b bus connection between the load EGI and the RFCS was 

implemented in order to minimize measurement latency and to maximize signal integrity (and safety). 

This configuration extends the 1553 muxbus up to 81ft outside of the aircraft fuselage along the path of 

the sling as shown in Figure 8-1. A dual-redundant electrical ground connection between the aircraft and 

the load has also been implemented to prevent excessive current travel along the 1553 bus and to protect 

the sensitive and expensive systems used for flight control.  The sensors are not flight critical because 

RASCAL has a fail-safe flight control system. However, the RASCAL 1553 bus has also been modified 

to automatically reconfigure to an internally terminated configuration if electrical connection to the 

external load is severed. 

EGI

Ground1553 Bus

 
 Figure 8-1. RASCAL 1553 muxbus extension.  
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8.2 Calculating Cable Angles from Load EGI Measurements 

In a field application airworthy direct measurements of cable angle and rate would be desirable, but 

are only just now under development [59, 60]. In this research, the load Euler angles and angular rates 

were measured in an EGI unit on board the load as described in Sec 8.1. This means that load angles and 

rates will be measured with respect to the load body axes. Considering that the load can spin with respect 

to the helicopter and the helicopter can yaw with respect to the load, it is important to transform the load 

Euler angles and rates into a coordinate system that is aligned with the aircraft heading, which is referred 

to as the “inertial cable angle”. This ensures that the lateral and longitudinal load motion with respect to 

the helicopter will be fed-back to the appropriate control axis, with the proper sign. Note that this should 

not be confused with the “relative cable angle”, which is also aligned with the aircraft heading but cable 

angles are measured with respect to the fuselage body axes, as opposed to the inertial frame. Inertial cable 

angle and cable rate feedbacks are used herein (as described in Sec. 4.4.2).  

For the transformation of load Euler angles to inertial cable Euler angles, it was assumed that the load 

does not pitch or roll about the cable. In fact, the load does rock about the cable axes, but these motions 

are systemic and can be removed from the measurement, as described in the following section (Sec. 8.3). 

Thus these calculations consider the cable to be rigid and the load rigidly attached to the cable, which 

indicates that the direction vector along the cable is equivalent in either the load or cable coordinate 

system, as shown in Figure 8-2. Then, resolving the cable direction ( zĉ  and zl̂ ) into inertial coordinates 

using both the load Euler angles and the aircraft-aligned heading cable-angle transformation gives:  
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 (8.1) 

The key coordinate systems are shown in Figure 8-2, and described in Table 8-1.  
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Figure 8-2. Coordinate systems for cable angle feedback. 
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Table 8-1. Definition of reference frames. 

Reference Frame Description Details 

N Inertial Frame Standard inertial frame 

H Aircraft Level Heading Frame Aligned with aircraft heading, but does not pitch or roll 

A Aircraft Body Axis Frame Yaws, pitches and rolls with the aircraft 

C Cable Frame Aligned with the cable (does spin relative to the aircraft) 

L Load Body Frame Yaws, pitches and rolls with the load 

 
HN R represents the rotation/transformation matrix from aircraft level heading (H) coordinate system 

to the inertial coordinate system (N). The level heading coordinate system is aligned with the aircraft 

heading, but does not pitch or roll with the fuselage.  
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Herein a short notation is used for sine and cosine, where for example  sinS
 
and  cosC .  

CH R represents the transformation matrix from the cable frame (C) to the aircraft level heading 

coordinate frame (H) and LN R represents the rotations between the load frame (L) and the inertial 

coordinate frame (N). The load frame spins with the load body, whereas the cable coordinate system is 

aligned with the aircraft heading as shown in Figure 8-2.  
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where c and c are the cable Euler angles with respect to the level heading frame. l , l , and l are the 

load Euler angles with respect to the inertial frame.  

 In this case, the aircraft heading and the load Euler angles are the measured quantities on the 

aircraft. Rearranging known quantities to the right half side of Eq. (8.1) gives:  
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Which is equivalent to:  
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Solving for the cable angles gives the required angles for feedback, in terms of the measured load Euler 

angles and aircraft heading: 
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It is simple to transform the load referenced angular velocities to give the cable angle rates in the cable 

axes, with the transformation between load and cable coordinates:  
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where l  .  

Then the inertial cable rates are calculated from the measured load angular rates:   
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8.3 Elimination of Load-Sling Interaction Modes 

The measurement of the load motion from the EGI on the load is particularly sensitive to any rocking 

motion of the load. These motions are measured as a load angular rate or attitude, but are not the pendular 

motions that the control system was designed to damp out. Once the EGI measurements of load angle are 

transformed to cable angles (which are in an axis system that is aligned with the aircraft heading) using 

the equations described in Sec. 8.2, these rocking motions show up as unwanted “noise” in the cable 

angles and rates.  This “noise” would occur for any sensor located on the load (another example would be 
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a vision based sensor that tracks markings on the load [59, 60]), but can be minimized by taking 

measurements at the hook as in the case of the unmanned K-MAX [17] or by developing a method to 

remove this effect from the measured data, which is the approach taken herein.   

The natural frequency of this rocking motion can be estimated by using a simple model of the sling 

that is modeled not as a single massless rigid cable, but instead as a cable with mass that is divided, for 

example, into three segments as shown in Figure 8-3. The resulting modes that arise from this model are a 

pendular mode and two sling modes. The linear equations of this system are: 
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 (8.11)      

This model of Eq. (8.11) can be extended to divide the sling into as many (N) segments as desired. As 

shown in Figure 8-4, four masses (N=5 segments) are sufficient to accurately predict the first pendulum 

mode as well as the two sling modes. The model was compared against the flight data for N=1:500 sling 

segments to determine if further accuracy could be achieved. Ultimately the first two sling mode 

frequencies are largely unaffected by the inclusion of additional segments (beyond N=5), and therefore 

did not provide improved agreement. The model natural frequencies correlate well to the peaks in the 

power spectral density of the angular rate responses of the load from the flight data in Figure 8-4. The 

model predicts that the sling mode frequencies change slightly with the load weight (1000lb vs. 5000lb), 

which is consistent with the flight data. Additionally, the frequency separation between the pendulum 

mode and the sling modes indicate that it was a reasonable assumption to design the control system with a 

model that does not include sling dynamics. 
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Figure 8-3. Sling model with 3 segments.  
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Figure 8-4. Comparison of sling power spectral density from flight data, as compared to model. 
 

These data in Figure 8-4 indicate that it is essential to eliminate the load rocking components from the 

cable angle measurements due to the frequency content. The first sling mode is not a desirable frequency 

to feedback, considering that it is near the coupled roll-flap mode for the UH-60A at ~6 rad/s (Sec. 2.2.4).  

This is also the frequency range in which the pilot would be very aware of additional uncommanded 

motions [61]. However, this motion is at too low a frequency to filter out using a low pass filter, which 

would add considerable lag to the load feedbacks. It would be possible to put a narrow notch filter, which 
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would reduce lag, but would have to be scheduled with load mass and sling length, since these two 

parameters affect the frequency of this mode quite strongly. Since neither a low pass nor notch filter are 

practical for this case, a simple estimator was designed to smooth the load measurements. The estimator 

uses measured load motions as well as aircraft accelerations, and requires knowledge of sling length (l). It 

is based on simple linear pendulum equations of motion, for a pendulum with an accelerating origin ( Hx ): 

 cLcHL gmlqxm sin*)(    (8.12)  

The sling degrees of freedom from Eq. (8.11) are not included in Eq. (8.12) because it is desired to 

ultimately eliminate these motions from the estimated load response.  The linear state-space model of Eq. 

(8.12) is implemented in the estimator, and uses the acceleration of the hook (where the load attaches to 

the fuselage) as an input and the pendular motions of the load as outputs: 
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The hook accelerations are calculated by transferring the measured aircraft accelerations ( Ax ) in 

aircraft body axes from the CG to the hook with the measured aircraft angular rates A ,  and the known 

CG-to-hook geometry 
AHr .  This inertial acceleration is then transformed from the aircraft body axis 

coordinate system the cable coordinate system with 
AC R  and Hx  is the resulting x-component:   

    x
AH

AA
AH

AA
AC

H crrxRx ˆ//    (8.14)                             

Note that the measured cable angles (with the unwanted sling mode noise) are used to calculate the 

transformation 
AC R , but that this does not add significant noise to the estimated cable angles (as seen 

later in this section).    

Then a state-estimator was designed: 

 yuxx LGLHF  ˆ)(̂   (8.15)     

Where:  
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The values of the L matrix are set very low in order to force the natural frequency of the estimator to 

be just slightly above the pendulum mode of the load. This ensures that the measured data is used for 

frequencies at and below the load mode. Then the model, which does not include the sling dynamics, 

dominates the estimated response at higher frequencies. Note that the washout on the cable angle 

feedback (see Figure 5-12) eliminates any problem with low frequency drift due to the low gain L matrix. 

This method succeeds in filtering the sling mode “noise” in the EGI data as shown in Figure 8-5. The 

state-estimator does not introduce lags such as in the heavily filtered raw data shown in Figure 8-5. The 

heavily filtered data uses a 2nd order Butterworth filter with cutoff frequency of 2 rad/s, which adds 

approximately 2 seconds of lag and would considerably degrade the stability margins of the CAF system.  

A similar estimator to that given in Eqs. (8.15)-(8.19) was used in the lateral axis. 
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Figure 8-5. Longitudinal cable rate data from flight  (5K, 56ft sling). 
 

8.4 Load Bounce Mode Notch Filters 

Another source of sensor “noise” which must be considered and addressed is the effect of the load 

“bounce” mode on the sensed aircraft vertical motion quantities. The load-sling dynamics also have a 

vertical mode where the sling stretches and contracts, similarly to a spring. This mode is at approximately 

14.5 rad/s for the load configuration that was flown (5000lbs, 56ft sling), as seen in the autospectrum of 
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the vertical velocity in Figure 8-6. The initial flight tests of the control laws did not include a notch filter 

to eliminate this mode from the vertical velocity feedback. Consequently, this caused the load bounce 

mode to be fed-back through the collective in the vertical velocity command mode and altitude hold 

mode, resulting in small but very lightly damped oscillations at this frequency. The pilots could detect 

this vibration and found it unsettling. The oscillations were eliminated by including a notch filter ( notchF ) 

on the vertical velocity feedback path: 
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The notch filter was designed to be fairly wide (at the cost of additional phase lag at cross-over) because 

the frequency range of the load bounce mode was observed to vary from 14.5 to 17 rad/s depending on 

the load mass and sling length.  
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Figure 8-6. Autospectrum for vertical velocity from flight (5K, 56ft sling). 

8.5 Radar Altitude Complimentary Filters 

Radar altimeters are very noisy sensors. This is exacerbated when an external load is moving in its 

sensing area. A complimentary filter with integrated vertical velocity ( EGIw ) from the EGI on RASCAL 

was developed and worked well to improve the altitude signal ( RadAltH ) for the unloaded configuration. A 

complimentary filter time constant of TC=6s was found to work well in flight testing without a slung load: 
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However, with an external load, this filtering is not sufficient when the load swings forward and 

blocks the radar altimeter. Depending upon on the sling length and altitude, the radar altimeter can jump 

hundreds of feet when the load swings beneath the radar altimeter. The external load angle measurement 

is used to change the time constant when the load is sensed to be swinging forward. The time constant is 

changed from TC=6s to TC=50s when the load sensor indicates that the load is swinging forward more 

than 4 degrees. This approach was used for both the CAF and OBL configurations. Since this does not 

affect the CAF/OBL comparison, the authors thought it was fair to use the load sensors for 

complimentary filtering on both configurations to increase safety in the vertical axis. The complimentary 

filter is beneficial because it does not add lag like a regular low pass filter, but it can become biased (i.e. 

steady-state error), particularly for large time constants. This is the motivation for switching the time 

constant with load swing instead of fixing the time constant at a value of TC=50. 

Examples of the raw and filtered signals are shown in Figure 8-7, for the depart-abort maneuver with 

a 5000lb load. During the maneuver the load swings forward, interfering with the radar, and causing a 

sharp downward spikes the in the radar altimeter signal at 4 and 11.5 seconds. The complimentary filter is 

effective at smoothing these spikes. 
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Figure 8-7. Complimentary filtered altitude during depart-abort maneuver in flight (5K, 56ft sling). 
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8.6 Flight Test Preparation 

The flight control system code was generated using SIMULINKTM and RealTimeWorkshopTM  auto-

coding functionality. The flight control law code was then tested in the RASCAL software-in-the-loop 

development facility at Moffett Field, CA. The RASCAL development facility (DF) is pictured in Figure 

8-8. The DF uses the nonlinear flight validated GENHEL model, described in Sec. 2.2.3, in the simulation 

of the aircraft dynamics. The flight control code is validated in the nonlinear GENHEL environment with 

frequency sweeps (similar to the results shown in Sec. 6.1), to ensure that broken loop and closed loop 

responses are as expected. The DF validation results are also shown later, against flight data and the linear 

model, in Figure 9-2. The DF uses the flight control computer in the loop, which is loaded with the 

validated flight control code, and is then used in flight. This ensures that the actual flight control code is 

tested in the DF, and thus minimizes configuration management problems. The pilot also is required to 

run through the flight test maneuvers as a practice in the DF before being cleared for flight test. 

 

 

Figure 8-8. RASCAL software-in-the-loop development facility.  
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8.7 Summary of Chapter 8 

Chapter 8 describes the analyses required to successfully integrate the cable angle/rate feedback 

control laws into the nonlinear flight environment. The key contributions of Chapter 8 include: 

1. Development of equations to convert on-load sensor measurements into cable angles. 

2. Design of an estimator to filter the sling modes from the measured on-load data. 

3. A complimentary filter that improves the aircraft radar altimeter drop-out due to load swing 

obscuring the radar. 
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9 Flight Testing 

The previous chapters of this dissertation described the design, simulation, and implementation of the 

control laws. Chapter 9 is the culmination of this work – flight testing. This is an important milestone 

because it represents the first time cable angle/rate feedback control laws have been tested in a manned 

full-authority fly-by-wire system. The flight test environment allows assessment of the validity of 

performance and handling qualities predictions from simulation. Additionally, flight testing provides 

concrete results in the form of measured flight responses of the aircraft and load, pilot comments, and 

handling qualities ratings.  Flight testing also ultimately determines if the CAF control system provides an 

improvement in the ability of the pilot to carry out tasks with the load as compared to the OBL system.   

The aircraft used for flight testing of the control system is the RASCAL JUH-60 experimental fly-by-

wire helicopter, shown with an external load in Figure 2-1 and described in Sec. 2.1. Flight testing was 

performed with 1000lb (1K) and 5000lb (5K) external loads, on a 56ft sling. A total of 43.1 hours of 

flight testing were completed, with four Army experimental test pilots. 

First, the responses of the system were validated in flight test using broken and closed-loop frequency 

responses. Then back-to-back single-blind pilot evaluations of the OBL and CAF designs were performed 

to determine how handling qualities were affected by cable feedback. The mission task elements (MTEs) 

that were used for this comparison were lateral reposition, depart-abort, precision hover, and precision 

load placement. The precision load placement task is a newly proposed MTE that focuses on placing the 

load on the ground in a precise delivery location. 

9.1 Flight Validation 

The flight testing began with validation of the flight-measured responses against the model for CAF 

and OBL using frequency sweeps, for the closed and broken loop responses. The frequency sweeps were 

input by the pilots for closed loop sweeps. The broken-loop frequency sweeps were injected electronically 

at the actuator. This method is illustrated by Figure 9-1, where the broken loop response )(sPH is 

calculated by calculating the frequency response for measured input signal, i, and measured output signal, 

o (broken loop = )(s
i

o
). Note that the pilot is instructed not to put in any inputs during this maneuver 

such that the broken loop response can be calculated. 
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Figure 9-1. Broken loop sweep inputs. 
 

Then, the software CIFER® [45] was used to calculate the flight frequency responses from the data. 

Finally, the flight frequency responses were compared to the model responses, to ensure that the 

responses of the closed and broken loop systems were as expected. This ensures that the model of the 

aircraft and flight control system used to predict stability margins and handling qualities is valid. This 

validation was performed before formal piloted evaluations, because model validity is critical to 

interpreting and understanding a correlation between the analytical specifications, and pilot 

comments/handling-qualities ratings. 

9.1.1 Validation Results 

The broken loop responses for the 1000lb (1K) and 5000lb (5K) loads were validated in order to 

ensure the stability margins were consistent with the model predictions.  Figure 9-2 shows the 5K broken 

loop response compared with the linear model for OBL (a) and CAF (b). The broken-loop frequency 

sweeps were performed in PH mode, so CAF is in Load Damping mode. As shown in the figures, the 

flight test broken loop responses closely track both the CONDUIT linear model response and the non-

linear simulation development facility (DF) response. The DF is a hardware in the loop simulator which 

uses the GenHel non-linear flight validated model [39] of the UH-60 dynamics (described in Sec. 2.2.3). 
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Figure 9-2. Broken loop responses from flight and simulation models (5K, 56ft sling). 
 
The stability margins calculated from the broken loop responses at the actuator were also close to 

those expected from the model. The stability margins and cross-over frequencies determined from flight 

are compared to the linear model (CONDUIT®) and the development facility non-linear model (DF) in 

Table 9-1. The phase margin improvement in flight between the OBL and CAF from 37.77 degrees to 

45.39 degrees is very close to the results predicted by the model.  

The closed loop responses determined from flight change as expected with cable angle feedback. As 

an example, the pitch attitude response is shown for the 5K load with OBL and CAF as compared to the 

command model in Figure 9-3a. As expected, the CAF design for the 5K load has less magnitude and 

phase distortion as compared to OBL, because CAF is in Pilot Handling mode for piloted inputs. The 

closed loop CAF response with the 1K load in Figure 9-3b has slightly more distortion than OBL because 

CAF was optimized for the 5K load configuration.  CAF overcorrects for the 1K load, causing some 

additional distortion in the Pilot Handling mode but more load damping.  

Figure 9-4 and Figure 9-5 illustrate improvements in the load damping with CAF relative to OBL for 

both the 5000lb and 1000lb loads, respectively. The 5000lb load frequency response ( c ) to an actuator 

chirp in PH mode is shown in Figure 9-4a, with CAF in Load Damping mode. The time response for 

acceleration to ~20kts and deceleration back to hover is shown in Figure 9-4b. The load damping is 

improved as the aircraft comes to a hover, as expected with the task tailored control laws (because this is 

where Load Damping mode is active).  Figure 9-5a shows the 1000lb load damping has improved in the 

frequency domain for CAF in Load Damping mode as compared to OBL. As seen in Figure 9-5b, the load 
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response has greatly improved for the entire maneuver, as it was nearly undamped for the OBL control 

laws with this light load.  

 
Table 9-1. Lateral stability margins from flight and models in PH mode (5K, 56ft sling). 

Lateral 
Axis 

Optimized Baseline (OBL) Cable Angle/Rate Feedback (CAF) 

Data 
Source 

Gain Margin 
(dB) 

Phase Margin 
(deg) 

Cross-over 
(rad/s) 

Gain Margin 
(dB) 

Phase Margin 
(deg) 

Cross-over 
(rad/s) 

FLIGHT 6.01 37.77 4.62 8.2 45.39 3.83 

DF 5.93 38.46 4.56 7.02 46.53 3.68 

CONDUIT 5.95 33.42 5.15 7.47 42.50 4.19 
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Figure 9-3. Flight closed-loop lon responses in attitude command mode (56ft sling).  
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Figure 9-4. Flight load response, position hold mode (5K, 56ft sling). 
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Figure 9-5. Flight load response, position hold mode (1K, 56ft sling). 

 



115 

9.2 Handling Qualities Evaluations of Mission Task Elements 

The military rotorcraft specification ADS-33E-PRF defines a selection of flight test evaluation 

maneuvers in the form of precisely defined Mission Task Elements (MTEs) [21]. These MTEs are 

stylized maneuvers which provide a standardized basis for an overall assessment of the rotorcraft's ability 

to perform certain critical tasks, and result in an assigned handling qualities rating (HQR). To allow for 

different standards of precision and aggressiveness, the performance standards for each task are listed 

separately for different rotorcraft categories and for slung load operations in Ref. 21.  The handling 

qualities ratings are assigned based on the Cooper-Harper Rating Scale [32]. The Cooper-Harper Rating 

scale, which consists of a series of questions and aircraft flying qualities descriptions, helps the pilot 

determine an HQR in a standardized way. The ratings range from 10 (worst) to 1 (best). The ratings are 

also categorized into Levels:  

 Level 1 for HQR 1-3.5 – ‘satisfactory without improvement’  

 Level 2 for HQR 3.5-6.5 – ‘adequate performance obtainable with tolerable pilot workload’ 

 Level 3 for HQR 6.5-9 –  ‘controllable’  

 HQR 10 – ‘uncontrollable’  

The interested reader can see Appendix B for the details of the scale.   

Handling qualities evaluations with the OBL and CAF control laws were performed for selected 

hover/low speed mission task elements (MTEs) from ADS-33E-PRF [21]. These tasks were Hover, 

Lateral-Reposition, and Depart-Abort because these tasks tend to bring out the negative impact of the 

presence of a slung load on the HQR [2] and are most relevant to slung load operations. Additionally, a 

new MTE for precision load placement (described in Sec. 9.2.1) was developed herein and used for 

evaluation. This new task was developed to provide ADS-33E-PRF with an MTE in that focuses on 

precision load set-down, a high workload element of slung load operations. It has been proposed by the 

author that this MTE be included in the next update to ADS-33.  

The handling qualities evaluation tests were performed in a single-blind study (e.g. the pilots were not 

told which control laws they were flying) with back-to-back comparisons between the two control laws, 

OBL and CAF. Four military experimental test pilots were involved in the flight tests, but only three sets 

of HQRs were collected for each task (not all pilots flew all tasks). Four tasks were flown: Hover, Lateral 

Reposition, Depart-Abort and the Load Placement MTE. 

9.2.1 Load Placement MTE 

The load placement mission task element (MTE) was developed to address the need for a task in 

ADS-33E-PRF [21] that focuses on load motions and load operations. For example, with a long sling and 

1000lb load, the lateral-reposition maneuver for the UH-60 (LMR ~0.06) often causes the load to swing at 

an amplitude greater than 30 degrees and is nearly undamped. This swinging does not significantly affect 

the HQR for the conventional aircraft repositioning MTEs because the load is relatively light compared to 
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the aircraft and thus does not greatly distort the response to pilot inputs for this task. The load placement 

MTE addresses the motion of the load and how that affects the handling qualities while delivering a 

lightly damped load to a precise location on the ground within a finite time.  The load placement task is 

described in the bullets below (in the standard ADS-33 format):  

 Objectives. The objectives of the load placement MTE are to check the ability to translate with, 

stabilize, and set down an external load at a specific location, within a reasonable time limit. In 

addition, this task checks the ability to set load down without any residual motion of the load on 

the ground, such as dragging or swinging.  

 Description of Maneuver. Initiate the maneuver at a ground speed between 6 and 10 knots, with 

a load clearance of 20 feet above ground level. The load placement target shall be oriented 

approximately 45 degrees relative to the heading of the rotorcraft. The load placement target is a 

ground referenced point, from which the deviation in the set-down point is measured. The ground 

track should be such that the rotorcraft will arrive over the target point (See Figure 9-6). Once the 

aircraft is stabilized in a hover over the load placement target, the crew chief will provide verbal 

instructions to assist the pilot in placing the load. These instructions should follow the form of 

direction-count-hold as in “Right, 3-2-1, hold” or “Down, 3-2-1, hold” to position the load and 

set it down.  

 Description of the Test Course. The suggested test course for this maneuver is shown in Figure 

9-6. Note that the desired and adequate boxes refer to the load set-down point, not the helicopter 

position during maneuver.   

 Performance Standards. Accomplish the transition to hover in one smooth maneuver. It is not 

acceptable to accomplish most of the deceleration well before the load target point and then creep 

up to the final position. The load swing should be contained within the desired boundaries (or 

adequate if trying for adequate performance) before placing the load on the ground. The load 

should not perceptibly drift, swing, or drag after initial ground contact. All other performance 

standards are given in Table 9-2. 
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Table 9-2. Precision load placement Mission Task Element (MTE) standards. 

 Externally 
Slung Load 

 GVE DVE 
Desired Performance 
Attain a controlled hover within X seconds of initiation of deceleration: 
Maintain altitude during translation and hover within +/- X ft:  
Controlled set-down of external load within X seconds of hover:  
Load set-down position should be within a box +/- X ft larger  
than the footprint of the external load on all sides:  
The load should have no perceptible drift at touchdown 

 
10 sec 
4 ft 
50 sec 
 
3 ft 
 

N/A 

Adequate Performance  
Attain a controlled hover within X seconds of initiation of deceleration: 
Maintain altitude during translation and hover within +/- X ft:  
Controlled set-down of external load within X seconds of hover:  
Load set-down position should be within a box +/- X ft larger  
than the footprint of the external load on all sides:  

 
15 sec 
 6ft 
120 sec 
 
6 ft 

N/A 

 

3ft3ft

 

3ft

Desired Footprint of
external load  

Cones

Adequate

Paint outline of
load placement 
target 

Right pilot
eye point

6 to 10 kts

Initial condition

3ft

 

Figure 9-6. Load placement Mission Task Element (MTE) course. 
 

9.2.2 Lateral Reposition and Depart Abort MTEs 

The results of the handling qualities evaluations for lateral reposition and depart abort MTEs are 

shown in Figure 9-7 for the 56ft sling with 1000lb (1K) and 5000lb (5K) external loads. The average 

ratings are given by the square markers, and the range of individual pilot ratings are shown by the error-

bars. From Figure 9-7, it is clear that the control laws were very similar and mostly provided Level 1 
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Handling Qualities Ratings (HQRs) for these large amplitude maneuvers. Additionally, the pilot cut-off 

frequencies (Eq. (6.1)) and pilot RMS (full throw +/- 5 inches) shown in Figure 9-8 indicate that there 

were not significant differences in pilot control strategy.  

Handling qualities ratings for the lateral-reposition and depart-abort MTEs were not significantly 

affected by the presence of CAF, even though the load responses were vastly improved. During these 

maneuvers, the lateral cable angles were very poorly damped for OBL and well damped for CAF as 

shown for example runs in Figure 9-9. The overall results for load RMS during these maneuvers are 

shown in Figure 9-10, indicating that on average CAF had significantly lower load motion for all the 

maneuvers except the 5K depart-abort. The reason that the 5K depart-abort did not show as great a 

difference in load motion is due to the pilot skill at timing the maneuver such that the aircraft goes over 

the load in the end gate, effectively applying damping to the load in OBL and helping to decelerate the 

aircraft quickly. The pilots are not able to do this for the 1K depart-abort because the load is too light.  

These results indicate that the CAF control laws were successful in providing an improved load 

response while maintaining good handling qualities for these larger-amplitude tasks. Improved HQRs 

were expected for CAF as compared to OBL because of reduced distortion of the magnitude curve of the 

piloted response as shown in Figure 9-3. However, there were no significant differences in the HQR for 

CAF versus OBL for these tasks. The improved distortion of the response in the Pilot Handling mode of 

CAF may not be large enough to result in a significant difference in task performance. Considering that 

both systems are in the HQR<4 region of the predicted handling qualities specification, as shown in 

Figure 7-5, the analysis is consistent with the results here which indicate Level 1 HQRs for both OBL and 

CAF.  Still, there are compelling reasons to use CAF for the Lateral Reposition and Depart Abort tasks; to 

provide a better behaved load (in the CAF Load Damping mode), and to achieve improved stability 

margins (in both Pilot Handling and Load Damping modes) as compared to OBL. These are important 

flight safety improvements to consider. 
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Figure 9-7. Handling qualities ratings for lateral-reposition and depart-abort MTEs (56ft sling). 
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Figure 9-8. Pilot cut-off frequencies and actuator RMS for lateral-reposition and depart-abort MTEs (56ft 
sling). 
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Figure 9-10. Cable Angle RMS for lateral reposition and depart-abort MTEs (56ft sling). 
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         (a) Depart-abort cable angle                              (b) Lateral-reposition cable angle 

 
Figure 9-9. Lateral cable angles ( c ) during MTEs from flight (1K, 56ft). 
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9.2.3 Hover and Load Placement MTEs 

The results of the handling qualities evaluations for hover and load placement MTEs are shown in 

Figure 9-11. The areas where there were key differences in the ratings were for the precision hover task 

with the heavy load, and for the load placement with the light load. These results show that the key trade-

off between load control and aircraft control is important in the handling qualities ratings. The CAF 

handling qualities rating improved to Level 1 for the load placement task, as compared to Level 2 for 

OBL. The CAF handling qualities rating for the hover task was slightly worse than the OBL, due to the 

trade-off between load control and aircraft control as described in the following paragraphs.  

The pilot cut-off frequencies are not meaningful for these tasks because the RMS of the pilot inputs is 

very small, as shown in Figure 9-12. This means that the pilot was mostly relying on the hold modes of 

the aircraft to complete these tasks, which makes sense because the pilots used velocity hold mode for the 

run-in and position hold during the hover/load-placement maneuvers. Of course, the pilot is not moving 

the cyclic stick (it is in detent) during these portions of the task, which explains the low RMS stick values 

in Figure 9-12. Thus, the responses of the aircraft and load in the hold modes are the key to understanding 

the pilot ratings. During position hold, which is a critical element of both Hover and Load Placement 

tasks, the Load Damping mode is active for CAF. Therefore, the Load Damping mode characteristics 

drive the HQRs for these tasks. The characteristics of the Pilot Handling mode do not significantly affect 

the HQR because the critical portion of this maneuver is not performed in that mode.  

Figure 9-13 explains the degradation in HQRs with CAF for the hover MTE with the 5K load (both 

systems are Level 2 for this task). For the CAF control laws, during the position maintenance portion of 

the task, there is a position excursion that exceeds the +/-3 feet requirement, which is caused by the Load 

Damping mode active in position hold.  This causes the pilot to make some corrections in order to stay in 

the desired hover box, before returning to the position hold mode. In OBL, the pilot could leave the stick 

in detent and let the position hold mode maintain position without any correction. It is worth noting that 

the aircraft would typically stay in the adequate box for CAF in position hold mode without input from 

the pilot (+/- 6ft). The fact that the load is much better controlled for CAF during this hover maneuver 

does not improve the handling qualities ratings because it is a fuselage-based task.  

Figure 9-14 shows that in general, the aircraft motion was larger during the final 30 second hover 

hold portion of the maneuver for CAF (because the system is also trying to damp the load), even though 

the pilot stick RMS was similar to OBL (Figure 9-12). This is consistent with simulation results shown in 

Chapter 7 (Figure 7-11), indicating that the aircraft moves over the load in order to provide load damping, 

which ultimately causes a greater position excursions with CAF than OBL in position hold mode (which 

is coincident with Load Damping mode for CAF). This indicates that the aircraft response to pilot inputs 

did not drive the HQR, but that the position hold performance was the critical element. In Figure 9-14 the 

3-sigma position values are roughly on the adequate/desired boundary (+/-3 feet) for the hover maneuver 
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with CAF, which is consistent with the performance in flight and the degraded HQR. The 3-sigma values 

for OBL are within desired (less than +/-3 feet), as is also similar to observations from flight. The results 

of the hover MTE reflect the trade-off made in the Load Damping mode – that more aircraft motion is 

accepted in order to damp the load.  

For the load placement task, the load can be set-down much more quickly and accurately on the 

ground with CAF. This is made possible by the improved load damping which becomes active in PH 

mode for the task-tailored control laws. However, this load damping comes at the cost of increased 

aircraft motion.  This is consistent with analytical studies of this control system, as shown in Figure 7-9 

and Figure 7-10, which show a clear trade-off between load damping and position maintenance of the 

fuselage.  For the load placement task, two methods were tested for load set-down: 

1. ‘Low precision’ maneuver in which the crew chief tries to predict when the load swings into the 

desired box and calls for the pilot to put down the load more quickly (but less accurately).  

2. ‘High precision’ maneuver which required the load swing to be inside the desired box (a few feet 

above the ground) before the crew chief called the load to the ground, which gives higher 

accuracy but longer load set-down times. 

For the low precision version of the task, the times for load set-down were roughly the same for CAF 

and OBL but the percentage of load deliveries to the desired box was reduced with OBL for both load 

configurations, as shown in Figure 9-15. The crew chief was required to time the load swing with the set-

down for the OBL system, and because the load swing is larger and less predictable this ultimately 

resulted in fewer deliveries to the desired box than for CAF.   

For the high precision load placement, the 1000lb load (which is poorly damped for the OBL design) 

set-down time is approximately twice as fast with the CAF control laws as compared to OBL, as shown in 

Figure 9-15. For the 1K high-precision load placement both control laws achieve a higher percentage of 

desired positioning than for the low-precision method. CAF had a 100% desired performance for the 

high-precision load placement method for the 1K load. The 5000lb load set-down times are also improved 

for CAF by 30% as compared to OBL for the high precision maneuver. For the 5000lb load both control 

systems had 100% desired load placement for the high precision maneuver.  

Generally, the pilots preferred the high precision load placement method, as it gave them more 

information about the load motion, and eliminated the effect of variability in crew-chief skill that 

determines the placement accuracy in the low precision method. In the future, only the high precision 

method will be used for the load placement MTE, as written into the task in Sec. 9.2.1.   

The handling qualities ratings in Figure 9-11 reflect the improvements for load placement with CAF. 

The 1000lb load HQR improved from Level 2 in OBL to Level 1 with CAF. Based on these results, the 

CAF task-tailored control law was successfully optimized for the load placement task (not the hover task) 
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to address this high workload aspect of slung load operations, and results in significant improvements for 

this task.  

The relationship between load set-down time and increased load damping for the high precision load 

placement is further illustrated by Figure 9-16. The load motions are much more controlled for the CAF 

control laws and so the load set-down can be achieved more rapidly. Pilot comments indicate this is the 

reason for the improved HQR with the CAF control laws for the load placement task. 
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Figure 9-11. Handling qualities ratings for hover and load placement MTEs (56ft sling). 
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Figure 9-12. Pilot RMS for hover and load placement MTEs (56ft sling). 
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Figure 9-13. Hover MTE responses from flight (5K, 56 ft sling). 
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Figure 9-14. Position RMS during hover maneuver.  
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Figure 9-15. Load placement MTE performance (56ft sling).  
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Figure 9-16. Precision load Placement MTE responses from flight (1K, 56ft sling). 
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9.3 Summary of Chapter 9 – Discussion of Flight Results 

The handling qualities ratings were similar for the depart-abort and lateral reposition tasks with CAF 

vs. OBL, and both systems were well within Level 1 (HQR<3.5).  The result was not expected given the 

reduction in closed loop attitude distortion that was achieved by the CAF control laws, which was 

expected to translate to improved handling qualities as compared to OBL. Instead, both OBL and CAF 

demonstrated good handling qualities for the lateral reposition and depart-abort tasks. However, CAF 

provided a more controlled load response and improved stability margins, both of which provide 

improved flight safety.  There were also some qualitative improvements noted by the pilots. One of the 

pilots commented that the key advantage is that “If the pilot stays in the loop a little longer (while the load 

damping settles down), during initial position capture, the result is a very stable aircraft, without residual 

oscillations due to the load.” This is beneficial in providing the pilot with a more stable attitude response 

and better damped load behavior, and “could be helpful in degraded visual environments (DVE) to 

eliminate residual aircraft motion due to load oscillations”.   

The key drawback of the setup with the CAF task-tailored control laws, which use Load Damping 

coincident with the position hold mode, was for the precision Hover MTE. As discussed in the previous 

sections of this dissertation, the Load Damping mode degrades precision position maintenance of the 

fuselage in position hold to adequate (+/-6 ft) when the load is swinging. One pilot explained this very 

clearly remarking that “For aircraft maneuvers requiring tight control to capture a position, the workload 

with CAF was higher, however, CAF was superior for precision load placement.” In operational 

environments, adequate performance for hover-hold may be an acceptable trade-off for improved load 

damping. The task-tailored CAF control laws provided a very clear improvement in the load placement 

task, especially for a lightly damped load. The load can be placed on the ground more quickly and with 

better accuracy using CAF. The operation is also much safer for ground crew because the load is more 

predictable and has less overall swing. In the future, it may be a better compromise to design the CAF 

Load Damping mode as a pilot selectable mode so it can be applied only when needed for load placement. 

This work was motivated by poor handling qualities of the legacy UH-60A/L aircraft with a long 

sling and heavy load, as observed in Ref. 2. The CAF task-tailored control laws succeeded in providing 

improved handling qualities for maneuvering tasks and load placement as compared to the legacy UH-60 

control laws, as shown in Table 9-3. (Note that only calm day ratings for precision hover were included in 

Table 9-3 in order to have a fair comparison with the legacy control law evaluations.  One of the pilots 

performed the precision hover task for OBL and CAF in 12-15kts of wind.)  

The legacy (operational) UH-60A/L has a partial authority SAS, which only features a rate command 

mode. Advanced modes such as altitude hold, velocity hold and position hold in the Optimized Baseline 

control laws provided a large improvement in the handling qualities as compared to the legacy UH-60A/L 

for maneuvering tasks, as shown by Table 9-3. However, CAF was required in order to get a major 
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improvement in the load placement task (Level 2 to Level 1), and also  provided improved handling 

qualities for maneuvering as compared to the legacy UH-60A/L aircraft.  

In the words of one of the evaluation pilots “overall, the CAF system is beneficial, but would require 

additional crew training in order to understand the best way to take advantage of the Load Damping 

mode.” The pilots felt that CAF worked well behind the scenes to provide a more stable external load 

during low speed maneuvering. The most difficult aspect of external load operations, requiring the highest 

pilot workload, is the hookup and set-down of the load. The pilots felt that “CAF, when combined with 

well performing hold modes, effectively drives that workload down to minimal levels.” 

 
Table 9-3. Average HQRs for legacy UH-60A/L SAS vs. CAF and OBL (56ft sling). 

 LAT REP, 5K DEPART-ABORT, 5K HOVER, 5K LOAD PLACEMENT, 1K 
LEGACY 4.50 4.00 4.50 5.00 

OBL 2.50 3.00 3.25 4.50 
CAF 3.00 3.17 4.00 3.33 
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10 Conclusions and Future Work 

The importance of carrying external loads with helicopters, and the high workload involved with 

operations near hover calls for improved control systems to help minimize pilot workload during these 

operations. This dissertation studied the dynamics of the two-body helicopter-load system, evaluated the 

effects of fuselage and cable feedbacks, designed a task-tailored control system with cable angle/rate 

feedback, and flight tested the system on an experimental fly-by-wire Black Hawk (JUH-60A) with a 

slung load.  This represented the first time that a modern fly-by-wire manned helicopter was flight tested 

with cable angle feedback.  

10.1 Conclusions 

In Chapters 2-6 of this dissertation, the dynamics and simple attitude command control responses of a 

cable angle/rate feedback control system were studied analytically and in fixed base pilot simulation. Two 

optimized attitude command cable angle/rate feedback control systems (Load Damping control system 

and Pilot Handling control system) were compared to a Baseline system (with fuselage feedback only) to 

determine the benefits that could be achieved as compared to a conventional control system. The 

following conclusions were reached in this analytical and simulation study: 

1. The constrained coupling numerator responses can be expressed in a state-space solution for 

evaluation of the basic effects of fuselage and cable angle feedback on the helicopter/load 

coupling dynamics in a multi-loop single-axis feedback system.  

2. The drawbacks of the Baseline that uses conventional fuselage feedback control system are 

degraded predicted handling qualities (HQR <4), and low lateral phase margins near the load 

mode.  

3. Cable rate feedback provides damping to the load response. However, load damping is associated 

with poor aircraft attitude response and degraded predicted handling qualities.  

4. Cable angle feedback combined with fuselage feedback provides improvement in the fuselage 

response of the aircraft, which improved the predicted handling qualities with an external load, 

but did not significantly improve load damping. 

5. Pilots preferred the Pilot Handling cable angle feedback configuration over the Load Damping 

configuration in the fixed base simulator for maneuvering tasks. However, the Load Damping 

configuration was seen as potentially providing improvements in load placement.  

In Chapters 7-9, a task-tailored cable angle/rate feedback (CAF) control system was developed in 

order to switch between Load Damping and Pilot Handling control systems depending upon the flight 

regime. A well designed Optimized Baseline (OBL) fly-by-wire control law (that does not use cable angle 

feedback) was developed for comparison with the cable angle system. A blind handling qualities flight-

test evaluation was performed with army experimental test pilots on an experimental fly-by-wire Black 

Hawk helicopter. The following conclusions can be drawn from the results: 
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1. There is a key trade-off between load damping and piloted handling qualities, which can be 

exploited with a task tailored control law.  This approach effectively mitigated the aircraft/load 

control problem in flight.   

2. Both OBL and CAF control laws significantly improved the handling qualities relative to the 

legacy UH-60A/L with a partial authority SAS by providing advanced augmentation with hold 

modes including attitude command/ velocity hold, position hold, and altitude hold. The CAF 

control laws were required to improve the load placement task to Level 1 performance and the 

load set-down time was reduced by a factor of 2 for the 1000lb load.  

3. The load placement mission task element (MTE) was useful for evaluating the handling qualities 

associated with the load set-down task. This is an important, high workload task for external load 

operations that is not captured by the current set of aircraft-focused ADS-33E-PRF tasks.  

4. Cable Angle/rate Feedback control laws provided improvements in stability margins, load set-

down times and load placement accuracy, as well as improvements in safety to ground personnel 

as compared to an Optimized Baseline fuselage feedback only control system. 

10.2 Future Work 

In the future, it would be useful to test the system for alternate sling lengths and load masses. The 

control system could be optimized to meet the requirements for all sling lengths with somewhat reduced 

performance, or scheduled for sling lengths. The JUH-60A Black Hawk is limited to 0.25 load mass ratio, 

but it would be useful to test the control system on a different model helicopter that could carry heavier 

load-mass-ratios.  

The pilot comments and handling qualities results from flight test indicated that a pilot selectable 

Load Damping mode might allow for good handling qualities for the hover and load placement MTEs. 

There are multiple configurations that one could imagine for the mechanization of this; a plunger that 

would damp the load, then returns to the Pilot Handling mode once the load is stable or alternatively a 

switch that would allow the pilot to toggle between the two modes, etc. It would be interesting to explore 

various pilot selectable configurations in simulation and flight test in the future.  

An area that could follow on to this work would be applying the methods used herein on an on-load 

actuation method (such as a moving hook or active sway arm). This configuration could allow for 

decoupling of load damping and handling qualities. The use of  both cable angle/rate feedback to the on-

load actuator and cable angle/rate feedback to the rotor could be used to maximize handling qualities and 

load damping simultaneously.   

Additionally the development of operationally viable sensors for cable angle feedback should 

continue to be advanced. This dissertation has demonstrated the benefits of cable angle feedback, and it is 

a worthwhile effort to develop sensors that would allow the implementation of this type of control system 

with minimal maintenance and cost. 
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A. Appendix-A 

This appendix describes the development of generic nonlinear equations of motion for the 

helicopter/slung load system, described in Sec. 2.2.1. This model is used to derive the linear model 

structure described in Sec. 2.2.2. The forces and moments acting on the rotor and tail-rotor are treated as 

lumped forces and moments. The slung load is treated as a point mass (with no inertia) and the sling as a 

rigid cable.  

Kane’s notation is used throughout this section. Some general examples follow:  

ABr / -  the position vector starting at point A and ending at point B; position of point B relative to point A 

BNV  - Velocity of Point B in Reference Frame N 

AF   -  A force applied to body A  

BN  - Angular velocity of reference frame B (attached to rigid body B) in reference frame N  

A.1  Define Reference Frames 

There are 3 relevant reference frames in this derivation:  

1. Newtonian (N) (local vertical, north-east-down axes, xn̂ , yn̂ , zn̂ ) 

2. Aircraft (A) (body axes, xâ , yâ , zâ ) 

3. Cable (C) (z-axis is aligned with cable, xĉ , yĉ , zĉ )  

 

 

Figure A1: Definition of reference frames. 

Figure A-1. Slung load geometry.  
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Note: slung load is modeled as a point mass  
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The rotation matrices give mappings between the two frames with Euler angles. The relationship 

between the Newtonian and Aircraft frames is defined in the conventional series of rotations: a rotation 

 about the Newtonian Z-axis, then rotation   about the new rotated Y-axis, and finally a rotation   

about the rotated X-axis. This is expressed below:  
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The relationship between the aircraft reference frame and the cable reference frame is also defined in 

a series of rotations. To go from aircraft axes to cable axes, first rotate through longitudinal cable angle 

c about the X-axis of the aircraft, and then rotate the lateral cable angle c  around the rotated Y-

axis. The rotation matrix is expressed below in terms of cable angles expressed relative to the aircraft 

frame:  
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And then:  
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A.2  Aircraft Equations of Motion 

F=ma:  

Starting from the body-fixed velocities of the aircraft:  

zyx
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Taking the derivative to get acceleration, and then forming F=ma:  
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And where aerodynamic and gravity forces on the fuselage are represented by A
AeroF  and A

GF terms, and 

A
CF  is cable tension T : 
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Starting with the equation for angular momentum: 
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A.3  Slung Load Equations of Motion 

Starting with the equation for the velocity of the point mass slung load in inertial space 

ALANLAANLN rvvv /   

Where:  
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Then taking the derivative of the velocity to get acceleration:  
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Finally setting F=ma, where cable forces on the slung load are equal and opposite to the cable forces on 

the aircraft:  
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The aerodynamic forces on the load are modeled as a drag force with fixed value of 
q

D
 in the direction of 

the velocity.   
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A.4  Solution for Cable Tension 

Solve for Cable Tension by assuming an inelastic cable, such that acceleration of the slung load in the zĉ  

direction is equal to zero in the cable reference frame. First, solve the slung load equations of motion for 

the acceleration of the load in the cable reference frame:  

  )(ˆˆ
1

)( / ALAN
N

LACNAN
zyF

L
Aero

L
G

L

LA
C

r
dt

d
vacTcFFF

m
v

dt

d
y

   

Then, dot both sides of equation of motion of slung load with zĉ , and apply the inelastic cable 
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Substitute the forces for acceleration:  
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And rearrange into an equation for the cable tension T:   

 
z

L

L
Aero

L
GALAN

N
LACN

A

A
Aero

A
G c

m

FF
r

dt

d
v

m

FF
T ˆ)(

1 / 






 




 


 

Where: 

LA mm

11
  

Since z
A

zA

A

A
G ng

m

ngm

m

F
ˆ)(

ˆ)(
  , and z

L

zL

L

L
G ng

m

ngm

m

F
ˆ)(

ˆ)(
  

Then these terms cancel out in the cable tension equation:  
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A.5  Final Non-Linear Equations 

F=ma (aircraft):  
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M=dh/dt (aircraft):  
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F=ma (slung load):  

Eliminating terms in the zĉ direction because accelerations in this direction are equal to zero, and 

removing gravity terms that cancel out:  
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B. Appendix-B 

This appendix describes the process for collecting pilot handling qualities ratings. First, the task is 

flown at least 3 times to ensure that the pilot is achieving consistent performance before giving a rating. 

After the task has been completed, the pilot goes through a questionnaire, and then gives a Cooper-Harper 

rating [32]. This is performed before moving on to another configuration or task, such that the flying 

qualities of the configuration on that particular task are fresh in the pilot’s mind.   

The questionnaire that was used to collect pilot comments is shown in Figure B-1. The pilot gives the 

answers to this questionnaire before giving a Cooper-Harper rating. This questionnaire prompts the pilot 

to think about the flight characteristics that were observed, which avoids hasty ratings, and also promotes 

better communication between the pilot and the engineer.   

The Cooper-Harper Rating scale is shown in Figure B-2 (from Ref. 26). The Cooper-Harper scale was 

originally developed to provide a standardized rating scale that was focused on handling qualities. The 

scale has a series of questions on the left hand side that the pilot answers before moving to the right in the 

respective Level category to determine the rating. 

 
Task Performance 
 
1. Describe ability to meet DESIRED / 

ADEQUATE performance standards. 
 
2. Describe aggressiveness / precision with 

which task is performed. 
 
3. If trying for DESIRED performance resulted in 

unacceptable oscillations, did decreasing your 
goal to ADEQUATE performance alleviate the 
problem? 

 
Aircraft Characteristics 
 
4. Describe any objectionable controller force 

characteristics. 
 
5. Describe predictability of initial aircraft 

response. 
 
6. Describe any mid- to long-term response 

problems. 
 
7. Describe any objectionable oscillations or 

tendency to overshoot. 
 
8. Describe any non-linearity of response. 
 
9. Describe any problems with harmony of pitch 

and roll, speed control, with height control, 
and with heading hold/turn coordination. 

 
 
 
 

 
Demands on the Pilot 
 
10. Describe overall control strategy in performing the 

task (cues used, scan, etc.). 
 
11. Describe any control compensation you had to make 

you to account for deficiencies in the aircraft. 
 
12. Describe any modifications you had to make to what 

you would consider “normal” control technique in 
order to make the aircraft behave the way you 
wanted. 

 
MISC. 
 
13. Please comment on anything else that may 

have influenced you. 
 
Assign HQR for overall task.   
 
14. Using the Cooper-Harper rating scale, please 

highlight your decision-making process and 
adjectives that are best suited in the context of 
the task.  If assigned HQR is Level 2, briefly 
summarize any deficiencies that make this 
configuration unsuitable for normal 
accomplishment of this task. 

 
15. What was the critical sub-phase of the task 

(e.g., entry, steady-state, exit) or major 
determining factor in the overall Handling 
Quality Rating (HQR). 

 
16. For cases with external load, did the load have a 

significant impact on the assigned HQR? 
 

Figure B-1. Pilot Questionnaire. 
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Figure B-2. Cooper-Harper Rating Scale [32].  
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